Created
May 1, 2023 14:31
-
-
Save dienhoa/3b702e2046ced2f87e03c87ff0a0ce62 to your computer and use it in GitHub Desktop.
Transformer for timeseries with attention layer
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class OurTST(Module): | |
def __init__(self, c_in, c_out, d_model, seq_len, n_layers, drop_out, fc_dropout): | |
self.c_in, self.c_out, self.seq_len = c_in, c_out, seq_len | |
self.W_P = nn.Linear(c_in, d_model) | |
# Positional encoding | |
W_pos = torch.empty((seq_len, d_model), device=default_device()) | |
nn.init.uniform_(W_pos, -0.02, 0.02) | |
self.W_pos = nn.Parameter(W_pos, requires_grad=True) | |
self.drop_out = nn.Dropout(drop_out) | |
self.encoders = nn.ModuleList(nn.MultiheadAttention(embed_dim=d_model, num_heads=1, batch_first=True) for i in range(n_layers)) | |
self.norm_layers = nn.ModuleList(nn.BatchNorm1d(seq_len) for i in range(n_layers)) | |
self.head = nn.Sequential( | |
nn.GELU(), | |
Flatten(), | |
nn.Dropout(fc_dropout), | |
nn.Linear(seq_len * d_model, c_out) | |
) | |
def forward(self, x): | |
o = x.swapaxes(1, 2) # [bs,c_in,seq_len] -> [bs,seq_len,c_in] | |
o = self.W_P(o) # [bs,seq_len,c_in] -> [bs,seq_len,d_model] | |
o = self.drop_out(o + self.W_pos) | |
for enc, norm in zip(self.encoders, self.norm_layers): | |
residual = o | |
o = enc(o, o, o)[0] # [bs, seq_len,d_model] -> [bs,seq_len,d_model] | |
o = norm(o) # Add residual connection and apply batch normalization | |
o = o.contiguous() | |
o = self.head(o) # [bs,seq_len x d_model] -> [bs,c_out] | |
return o |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment