Last active
January 18, 2021 20:18
-
-
Save data-hound/ad4717217485cf09c8f4e8a404b078e9 to your computer and use it in GitHub Desktop.
Scikeras Tutorial -1
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from sklearn.datasets import make_classification | |
from tensorflow import keras | |
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier | |
# Make a dummy dataset | |
X, y = make_classification(1000, 20, n_informative=10, random_state=0) | |
X = X.astype(np.float32) | |
y = y.astype(np.int64) | |
print("Features Shape: ",X.shape) | |
print("Targets Shape: ",y.shape) | |
# get_model returns a compiled model | |
def get_model(n_features_in_, X_shape, n_classes_, hidden_layer_dim=100): | |
# Define a sequential model | |
model = keras.models.Sequential() | |
model.add(keras.layers.Dense(n_features_in_, input_shape=X_shape[1:])) | |
model.add(keras.layers.Activation("relu")) | |
model.add(keras.layers.Dense(hidden_layer_dim)) | |
model.add(keras.layers.Activation("relu")) | |
model.add(keras.layers.Dense(n_classes_)) | |
model.add(keras.layers.Activation("softmax")) | |
# Compile the model | |
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=["accuracy"]) | |
return model | |
clf = KerasClassifier( | |
build_fn=get_model, | |
n_features_in_=1000, | |
X_shape=X.shape, | |
n_classes_=2, | |
hidden_layer_dim=100, | |
) | |
clf.fit(X, y) | |
print(clf.score(X[-100:,:],y[-100:])) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment