Created
July 20, 2017 16:54
-
-
Save danqing/14cefbc1c5158ba009027b0a3430bad9 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function | |
import keras | |
from keras.datasets import mnist | |
from keras.models import Sequential | |
from keras.layers import Dense, Dropout | |
from keras.optimizers import RMSprop | |
batch_size = 128 | |
num_classes = 10 | |
epochs = 20 | |
# the data, shuffled and split between train and test sets | |
(x_train, y_train), (x_test, y_test) = mnist.load_data() | |
x_train = x_train.reshape(60000, 784) | |
x_test = x_test.reshape(10000, 784) | |
x_train = x_train.astype('float32') | |
x_test = x_test.astype('float32') | |
x_train /= 255 | |
x_test /= 255 | |
print(x_train.shape[0], 'train samples') | |
print(x_test.shape[0], 'test samples') | |
# convert class vectors to binary class matrices | |
y_train = keras.utils.to_categorical(y_train, num_classes) | |
y_test = keras.utils.to_categorical(y_test, num_classes) | |
model = Sequential() | |
model.add(Dense(512, activation='relu', input_shape=(784,))) | |
model.add(Dropout(0.2)) | |
model.add(Dense(512, activation='relu')) | |
model.add(Dropout(0.2)) | |
model.add(Dense(10, activation='softmax')) | |
model.summary() | |
model.compile(loss='categorical_crossentropy', | |
optimizer=RMSprop(), | |
metrics=['accuracy']) | |
history = model.fit(x_train, y_train, | |
batch_size=batch_size, | |
epochs=epochs, | |
verbose=1, | |
validation_data=(x_test, y_test)) | |
score = model.evaluate(x_test, y_test, verbose=0) | |
print('Test loss:', score[0]) | |
print('Test accuracy:', score[1]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment