-
-
Save dannguyen/a43f9ef84f3a00b0ff0996fbf3a7d51b to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot as plt | |
from PyQt5 import QtCore | |
import numpy as np | |
import time | |
import math | |
class VisualiseFrequency(QtCore.QThread): | |
def __init__(self, song, canvas, player): | |
super().__init__() | |
self.canvas = canvas | |
self.figure = self.canvas.figure | |
self.player = player | |
self.samples = np.array(song.get_array_of_samples()) | |
self.song = song | |
def run(self): | |
self.figure.patch.set_facecolor((0, 0, 0)) | |
ax1 = self.figure.add_subplot(1,1,1) | |
ax1.set_facecolor((0, 0, 0)) | |
interval = 0.05 | |
bars_n = 60 | |
frequency_range = 1 | |
bars = np.zeros(bars_n) | |
max_sample = self.samples.max() | |
for timestamp in range(0, math.ceil(self.song.duration_seconds/interval)): | |
start = time.time() | |
timestamp *= interval | |
sample_count = int(self.song.frame_rate * interval) | |
start_index = int((self.player.position()/1000) * self.song.frame_rate) | |
v_sample = self.samples[start_index:start_index+sample_count] | |
fourier = np.fft.fft(v_sample) | |
freq = np.fft.fftfreq(fourier.size, d=interval) | |
amps = 2/v_sample.size * np.abs(fourier) | |
data = np.array([freq, amps]).T | |
bar_width_range = frequency_range / bars_n | |
bars_samples = np.array([]) | |
if not data.size: | |
time.sleep(max(interval - time.time() + start, 0)) | |
continue | |
for f in np.arange(0, frequency_range, bar_width_range): | |
amps = np.array(data) | |
amps = amps[(f-bar_width_range<amps[:,0]) & (amps[:,0]<f)] | |
if not amps.size: | |
bars_samples = np.append(bars_samples, 0) | |
else: | |
bars_samples = np.append(bars_samples, amps.max()) | |
for n, amp in enumerate(bars_samples): | |
if bars[n] > 0 and amp < bars[n]: | |
bars[n] -= bars[n] / 3 | |
if bars[n] < 1: | |
bars[n] = 0 | |
else: | |
bars[n] = amp | |
if bars[n] < 1: | |
bars[n] = 0 | |
ax1.clear() | |
if ax1.lines: | |
ax1.lines[0].set_data(range(len(bars)), bars) | |
else: | |
ax1.plot(range(len(bars)), bars, color='r') | |
ax1.set_ylim(top=max_sample, bottom=0) | |
ax1.fill_between(range(len(bars)), bars, color='#c60303') | |
self.canvas.draw() | |
plt.pause(0.001) | |
time.sleep(max(interval - time.time() + start, 0)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment