Created
April 27, 2015 03:36
-
-
Save cwharland/7af4009baf55d59201c6 to your computer and use it in GitHub Desktop.
Create Fake Confusion Matrix Arrays
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import numpy as np | |
from sklearn.metrics import confusion_matrix | |
labels = ['N', 'L', 'R', 'A', 'P', 'V'] | |
df = pd.DataFrame([ | |
[1971, 19, 1, 8, 0, 1], | |
[16, 1940, 2, 23, 9, 10], | |
[8, 3, 181, 87, 0, 11], | |
[2, 25, 159, 1786, 16, 12], | |
[0, 24, 4, 8, 1958, 6], | |
[11, 12, 29, 11, 11, 1926] ], columns=labels, index=labels) | |
df.index.name = 'Actual' | |
df.columns.name = 'Predicted' | |
def create_arrays(df): | |
# Unstack to make tuples of actual,pred,count | |
df = df.unstack().reset_index() | |
# Pull the value labels and counts | |
actual = df['Actual'].values | |
predicted = df['Predicted'].values | |
totals = df.iloc[:,2].values | |
# Use list comprehension to create original arrays | |
y_true = [[curr_val]*n for (curr_val, n) in zip(actual, totals)] | |
y_predicted = [[curr_val]*n for (curr_val, n) in zip(predicted, totals)] | |
# They come nested so flatten them | |
y_true = [item for sublist in y_true for item in sublist] | |
y_predicted = [item for sublist in y_predicted for item in sublist] | |
return y_true, y_predicted | |
# Recreate the original confusion matrix and check for equality | |
y_t, y_p = create_arrays(df) | |
conf_mat = confusion_matrix(y_t,y_p) | |
check_labels = np.unique(y_t) | |
df_new = pd.DataFrame(conf_mat, columns=check_labels, index=check_labels).loc[labels, labels] | |
df_new.index.name = 'Actual' | |
df_new.columns.name = 'Predicted' | |
df == df_new | |
# And for the binary | |
labels = ['False', 'True'] | |
df = pd.DataFrame([ | |
[5, 3], | |
[2, 7]], columns=labels, index=labels) | |
df.index.name = 'Actual' | |
df.columns.name = 'Predicted' | |
# Recreate the original confusion matrix and check for equality | |
y_t, y_p = create_arrays(df) | |
conf_mat = confusion_matrix(y_t,y_p) | |
check_labels = np.unique(y_t) | |
df_new = pd.DataFrame(conf_mat, columns=check_labels, index=check_labels).loc[labels, labels] | |
df_new.index.name = 'Actual' | |
df_new.columns.name = 'Predicted' | |
df == df_new |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment