Last active
September 5, 2024 14:07
-
-
Save cutecutecat/bd0897eb9adea4ab3851494c00e9b514 to your computer and use it in GitHub Desktop.
Citus with pgvecto.rs
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from pgvecto_rs.psycopg import register_vector | |
import psycopg | |
# generate random data | |
rows = 100000 | |
dimensions = 128 | |
embeddings = np.random.rand(rows, dimensions) | |
categories = np.random.randint(100, size=rows).tolist() | |
queries = np.random.rand(10, dimensions) | |
# enable extensions | |
conn = psycopg.connect( | |
conninfo="postgres://postgres:123@localhost:5432/postgres", | |
dbname="postgres", | |
autocommit=True, | |
) | |
conn.execute("CREATE EXTENSION IF NOT EXISTS citus") | |
conn.execute("CREATE EXTENSION IF NOT EXISTS vectors") | |
conn.execute("ALTER DATABASE postgres SET hnsw.ef_search = 20") | |
conn.close() | |
# reconnect for updated GUC variables to take effect | |
conn = psycopg.connect( | |
conninfo="postgres://postgres:123@localhost:5432/postgres", | |
dbname="postgres", | |
autocommit=True, | |
) | |
register_vector(conn) | |
print("Creating distributed table") | |
conn.execute("DROP TABLE IF EXISTS items") | |
conn.execute( | |
"CREATE TABLE items (id bigserial, embedding vector(%d), category_id bigint, PRIMARY KEY (id, category_id))" | |
% dimensions | |
) | |
conn.execute("SET citus.shard_count = 4") | |
conn.execute("SELECT create_distributed_table('items', 'category_id')") | |
print("Loading data in parallel") | |
with conn.cursor().copy( | |
"COPY items (embedding, category_id) FROM STDIN WITH (FORMAT BINARY)" | |
) as copy: | |
copy.set_types(["vector", "bigint"]) | |
for i in range(rows): | |
copy.write_row([embeddings[i], categories[i]]) | |
while conn.pgconn.flush() == 1: | |
pass | |
print("Creating index in parallel") | |
conn.execute("CREATE INDEX ON items USING vectors (embedding vector_l2_ops) WITH (options = \"[indexing.hnsw]\")") | |
print("Running distributed queries") | |
for query in queries: | |
items = conn.execute( | |
"SELECT id FROM items ORDER BY embedding <-> %s LIMIT 10", (query,) | |
).fetchall() | |
print([r[0] for r in items]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment