Created
March 30, 2023 08:45
-
-
Save csiebler/52b7f948ba9717b07130948ddfa15fe7 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import openai | |
from dotenv import load_dotenv | |
from langchain.llms import AzureOpenAI | |
from langchain.embeddings import OpenAIEmbeddings | |
# Load environment variables (set OPENAI_API_KEY and OPENAI_API_BASE in .env) | |
load_dotenv() | |
# Configure OpenAI API | |
openai.api_type = "azure" | |
openai.api_version = "2022-12-01" | |
openai.api_base = os.getenv('OPENAI_API_BASE') | |
openai.api_key = os.getenv("OPENAI_API_KEY") | |
# Init LLM and embeddings model | |
llm = AzureOpenAI(deployment_name="text-davinci-003", temperature=0.1) | |
embeddings = OpenAIEmbeddings(model="text-embedding-ada-002", chunk_size=1) | |
from langchain.vectorstores import Chroma | |
from langchain.document_loaders import DirectoryLoader | |
from langchain.document_loaders import TextLoader | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.chains import RetrievalQAWithSourcesChain | |
loader = DirectoryLoader('../data/qna/', glob="*.txt", loader_cls=TextLoader) | |
documents = loader.load() | |
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=50) | |
docs = text_splitter.split_documents(documents) | |
print(docs) | |
db = Chroma.from_documents(documents=docs, embedding=embeddings, persist_directory="db/") | |
db.persist() | |
chain = RetrievalQAWithSourcesChain.from_chain_type(llm=llm, chain_type="stuff", retriever=db.as_retriever()) | |
query = "what is azure openai service?" | |
answer = chain({"question": query}, return_only_outputs=True) | |
print(answer) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment