Created
July 3, 2025 12:28
-
-
Save clayrat/76cf87598433721c3e60aa01a4ba1a95 to your computer and use it in GitHub Desktop.
Modular arithmetics
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
-- adapted from https://gist.github.com/oisdk/037862acb385f30257a1c594fd5a616e | |
module ModArith where | |
open import Prelude | |
open import Data.Empty | |
open import Data.Nat | |
open import Data.Bool | |
open import Data.Reflects as Reflects | |
open import Data.Dec | |
module GTE where | |
infix 4 _≥_ | |
data _≥_ (m : ℕ) : ℕ → 𝒰 where | |
m≥m : m ≥ m | |
m≥p : ∀ {n} → m ≥ suc n → m ≥ n | |
s≥s : ∀ {n m} → n ≥ m → suc n ≥ suc m | |
s≥s m≥m = m≥m | |
s≥s (m≥p n≥m) = m≥p (s≥s n≥m) | |
p≥p : ∀ {n m} → suc n ≥ suc m → n ≥ m | |
p≥p m≥m = m≥m | |
p≥p (m≥p n≥m) = m≥p (p≥p n≥m) | |
≥-trans : ∀ {n m l} → n ≥ m → m ≥ l → n ≥ l | |
≥-trans m≥m ml = ml | |
≥-trans nm@(m≥p _) m≥m = nm | |
≥-trans nm@(m≥p _) (m≥p ml) = m≥p (≥-trans nm ml) | |
=→≥ : ∀ {n m} → n = m → n ≥ m | |
=→≥ {n} {m} e = subst (n ≥_) e m≥m | |
z≯n : ∀ {n} → zero ≥ suc n → ⊥ | |
z≯n (m≥p z≥sn) = z≯n z≥sn | |
n≥z : ∀ {n} → n ≥ zero | |
n≥z = go _ m≥m | |
where | |
go : ∀ {n} m → n ≥ m → n ≥ zero | |
go zero n≥m = n≥m | |
go (suc m) n≥m = go m (m≥p n≥m) | |
_≥?_ : ℕ → ℕ → Bool | |
zero ≥? zero = true | |
zero ≥? suc m = false | |
suc n ≥? zero = true | |
suc n ≥? suc m = n ≥? m | |
instance | |
reflects-≥? : ∀ {n m} → Reflects (n ≥ m) (n ≥? m) | |
reflects-≥? {n = zero} {m = zero} = ofʸ m≥m | |
reflects-≥? {n = zero} {m = suc m} = ofⁿ z≯n | |
reflects-≥? {n = suc n} {m = zero} = ofʸ n≥z | |
reflects-≥? {n = suc n} {m = suc m} = Reflects.dmap s≥s (contra p≥p) (reflects-≥? {n = n} {m = m}) | |
dec-≥? : ∀ {n m} → Dec (n ≥ m) | |
dec-≥? {n} {m} .does = n ≥? m | |
dec-≥? {n} {m} .proof = reflects-≥? {n = n} {m = m} | |
open GTE using (_≥_; m≥m; m≥p; ≥-trans; =→≥; _≥?_) | |
Mod : ℕ → 𝒰 | |
Mod n = Σ[ m ꞉ ℕ ] (n ≥ m) | |
infixl 6 _+m_ | |
_+m_ : ∀ {n} → Mod n → Mod n → Mod n | |
_+m_ (m , x) = go x | |
where | |
go : ∀ {n m} → n ≥ m → Mod n → Mod n | |
go m≥m y = y | |
go (m≥p x) (zero , y) = suc _ , x | |
go (m≥p x) (suc s , y) = go x (s , m≥p y) | |
space : ∀ {n m} → n ≥ m → ℕ | |
space m≥m = zero | |
space (m≥p n≥m) = suc (space n≥m) | |
to-ℕ : ∀ {n} → Mod n → ℕ | |
to-ℕ = space ∘ snd | |
from-ℕ-= : ∀ {n} m | |
→ (@0 n≥m : n ≥ m) | |
→ Σ[ n-m ꞉ Mod n ] (m = to-ℕ n-m) | |
from-ℕ-= zero n≥m = (_ , m≥m) , refl | |
from-ℕ-= (suc n) n≥m with from-ℕ-= n (m≥p n≥m) | |
... | (zero , x) , e = absurd (ctra _ zero x (≥-trans n≥m (=→≥ $ ap suc e))) | |
where | |
n≱sk+n : ∀ n k {sk+n} → sk+n = suc k + n → ¬ (n ≥ sk+n) | |
n≱sk+n n k e m≥m = false! (e ∙ +-comm (suc k) n) | |
n≱sk+n n k e (m≥p mm) = n≱sk+n n (suc k) (ap suc e) mm | |
ctra : ∀ n m → (n≥m : n ≥ m) → ¬ (n ≥ suc (m + space n≥m)) | |
ctra n m m≥m n≥st = n≱sk+n n 0 (ap suc (+-zero-r m)) n≥st | |
ctra n m (m≥p mm) n≥st = ctra n (suc m) mm (≥-trans n≥st (=→≥ $ ap suc $ +-suc-r m (space mm))) | |
... | (suc s , x) , e = (s , m≥p x) , (ap suc e) | |
mod-from-ℕ : ∀ {n} m → {@0 n≥m : ⌞ n ≥? m ⌟} → Mod n -- why not n ≥ m ? | |
mod-from-ℕ m {n≥m} = fst $ from-ℕ-= m (so→true! n≥m) | |
instance | |
From-ℕ-Mod : ∀ {n} → From-ℕ (Mod n) | |
From-ℕ-Mod {n} .From-ℕ.Constraint m = ⌞ n ≥? m ⌟ | |
From-ℕ-Mod {n} .from-ℕ m ⦃ (n≥m) ⦄ = mod-from-ℕ m {n≥m = n≥m} | |
-_ : ∀ {n} → Mod n → Mod n | |
- (s , p) = mod-from-ℕ s {n≥m = true→so! p} | |
example : 4 +m 8 = the (Mod 9) 2 | |
example = refl |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment