Last active
May 1, 2025 15:47
-
-
Save cheeyeo/93cab948789a5285064f146c781bc5a0 to your computer and use it in GitHub Desktop.
Python script to upload Triton model to Sagemaker
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
import os | |
import json | |
import time | |
import boto3 | |
import sagemaker | |
if __name__ == "__main__": | |
role = "SAGEMAKER EXECUTION ROLE ARN" | |
sm_client = boto3.client(service_name="sagemaker") | |
runtime_sm_client = boto3.client("sagemaker-runtime") | |
sagemaker_session = sagemaker.Session(boto_session=boto3.Session()) | |
bucket = sagemaker.Session().default_bucket() | |
# account mapping for SageMaker MME Triton Image | |
account_id_map = { | |
"us-east-1": "785573368785", | |
"us-east-2": "007439368137", | |
"us-west-1": "710691900526", | |
"us-west-2": "301217895009", | |
"eu-west-1": "802834080501", | |
"eu-west-2": "205493899709", | |
"eu-west-3": "254080097072", | |
"eu-north-1": "601324751636", | |
"eu-south-1": "966458181534", | |
"eu-central-1": "746233611703", | |
"ap-east-1": "110948597952", | |
"ap-south-1": "763008648453", | |
"ap-northeast-1": "941853720454", | |
"ap-northeast-2": "151534178276", | |
"ap-southeast-1": "324986816169", | |
"ap-southeast-2": "355873309152", | |
"cn-northwest-1": "474822919863", | |
"cn-north-1": "472730292857", | |
"sa-east-1": "756306329178", | |
"ca-central-1": "464438896020", | |
"me-south-1": "836785723513", | |
"af-south-1": "774647643957", | |
} | |
region = boto3.Session().region_name | |
if region not in account_id_map.keys(): | |
raise("Unsupported region") | |
base = "amazonaws.com.cn" if region.startswith("cn-") else "amazonaws.com" | |
account_id = account_id_map[region] | |
image_uri = f"{account_id}.dkr.ecr.{region}.{base}/sagemaker-tritonserver:23.12-py3" | |
# uploads to default sagemaker bucket i.e. sagemaker-eu-west-2-<ACCOUNT ID> | |
model_data_uri = sagemaker_session.upload_data( | |
path="ensemble_model.tar.gz", | |
key_prefix="ensemble_model" | |
) | |
container = { | |
"Image": image_uri, | |
"ModelDataUrl": model_data_uri, | |
"Environment": {"SAGEMAKER_TRITON_DEFAULT_MODEL_NAME": "ensemble_model"} | |
} | |
ts = time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime()) | |
sm_model_name = f"ensemble-{ts}" | |
create_model_response = sm_client.create_model( | |
ModelName=sm_model_name, | |
ExecutionRoleArn=role, | |
PrimaryContainer=container | |
) | |
print(f"Model Arn: {create_model_response["ModelArn"]}") | |
endpoint_config_name = f"ensemble-epc-{ts}-2xl" | |
create_endpoint_config_response = sm_client.create_endpoint_config( | |
EndpointConfigName=endpoint_config_name, | |
ProductionVariants=[ | |
{ | |
"InstanceType": "ml.g5.2xlarge", | |
"InitialVariantWeight": 1, | |
"InitialInstanceCount": 1, | |
"ModelName": sm_model_name, | |
"VariantName": "AllTraffic", | |
} | |
], | |
) | |
print("Endpoint Config Arn: " + create_endpoint_config_response["EndpointConfigArn"]) | |
endpoint_name = f"ensemble-ep-{ts}-2xl" | |
create_endpoint_response = sm_client.create_endpoint( | |
EndpointName=endpoint_name, EndpointConfigName=endpoint_config_name | |
) | |
print("Endpoint Arn: " + create_endpoint_response["EndpointArn"]) | |
resp = sm_client.describe_endpoint(EndpointName=endpoint_name) | |
status = resp["EndpointStatus"] | |
print("Status: " + status) | |
while status == "Creating": | |
time.sleep(60) | |
resp = sm_client.describe_endpoint(EndpointName=endpoint_name) | |
status = resp["EndpointStatus"] | |
print("Status: " + status) | |
print("Arn: " + resp["EndpointArn"]) | |
print("Status: " + status) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment