Created
April 25, 2025 16:09
-
-
Save cheeyeo/6e40a47f40990b52c6ddf793ad03a28b to your computer and use it in GitHub Desktop.
Example Python backend code for Nvidia Triton which uses the grounding dino model from HuggingFace
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import json | |
import io | |
import numpy as np | |
import torch | |
from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor | |
import triton_python_backend_utils as pb_utils | |
from PIL import Image | |
class TritonPythonModel: | |
def initialize(self, args): | |
self.logger = pb_utils.Logger | |
self.model_config = json.loads(args["model_config"]) | |
self.model_params = self.model_config.get("parameters", {}) | |
default_hf_model = "IDEA-Research/grounding-dino-tiny" | |
hf_model = self.model_params.get("huggingface_model", {}).get("string_value", default_hf_model) | |
self.logger.log_info(f"Loading HuggingFace model: {hf_model}") | |
default_box_threshold = 0.3 | |
default_text_threshold = 0.25 | |
self.box_threshold = float(self.model_params.get("box_threshold", {}).get("string_value", default_box_threshold)) | |
self.text_threshold = float(self.model_params.get("text_threshold", {}).get("string_value", default_text_threshold)) | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
self.processor = GroundingDinoProcessor.from_pretrained(hf_model) | |
self.model = GroundingDinoForObjectDetection.from_pretrained(hf_model).to(self.device) | |
def execute(self, requests): | |
responses = [] | |
for request in requests: | |
input_tensor = pb_utils.get_input_tensor_by_name(request, "image_input") | |
input_image = np.squeeze(input_tensor.as_numpy()).transpose((2, 0, 1)) | |
text = 'receipt.' | |
inputs = self.processor(images=input_image, text=text, return_tensors="pt").to(self.device) | |
with torch.no_grad(): | |
outputs = self.model(**inputs) | |
self.logger.log_info(f"IMAGE SHAPE: {input_image.shape}") | |
channels, height, width = input_image.shape | |
results = self.processor.post_process_grounded_object_detection( | |
outputs, | |
inputs.input_ids, | |
target_sizes=[(height, width)], | |
box_threshold=self.box_threshold, | |
text_threshold=self.text_threshold, | |
)[0] | |
self.logger.log_info(f"results from dino model: {results}") | |
final_coords = [] | |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): | |
if round(score.item(), 2) < 0.6: | |
# TODO: Fail with exception here.... | |
self.logger.log_info('Low confidence. Ignore') | |
continue | |
box = [round(i, 1) for i in box.tolist()] | |
self.logger.log_info(f"Detected {label} with confidence " f"{round(score.item(), 2)} at location {box}") | |
x1, y1 = int(box[0]), int(box[1]) | |
x2, y2 = int(box[2]), int(box[3]) | |
coords = [x1, y1, x2, y2] | |
# self.logger.log_info(f'COORDS: {x1, y1, x2, y2}') | |
self.logger.log_info(f"COORDS: {coords}") | |
final_coords.append(coords) | |
tensor = pb_utils.Tensor("bounding_box", np.array(final_coords)) | |
inference_response = pb_utils.InferenceResponse( | |
output_tensors=[tensor] | |
) | |
responses.append(inference_response) | |
return responses | |
def finalize(self): | |
print("Cleaning up...") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment