Last active
May 17, 2023 00:37
-
-
Save castano/d83167cc8490070dc8f322004f057024 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// This code is in the public domain -- Ignacio Castaño <[email protected]> | |
#include "Sphere.h" | |
#include "Vector.inl" | |
#include "Box.inl" | |
#include <float.h> // FLT_MAX | |
using namespace nv; | |
const float radiusEpsilon = 1e-4f; | |
Sphere::Sphere(Vector3::Arg p0, Vector3::Arg p1) { | |
if (p0 == p1) *this = Sphere(p0); | |
else { | |
center = (p0 + p1) * 0.5f; | |
radius = length(p0 - center) + radiusEpsilon; | |
float d0 = length(p0 - center); | |
float d1 = length(p1 - center); | |
nvDebugCheck(equal(d0, radius - radiusEpsilon)); | |
nvDebugCheck(equal(d1, radius - radiusEpsilon)); | |
} | |
} | |
Sphere::Sphere(Vector3::Arg p0, Vector3::Arg p1, Vector3::Arg p2) { | |
if (p0 == p1 || p0 == p2) *this = Sphere(p1, p2); | |
else if (p1 == p2) *this = Sphere(p0, p2); | |
else { | |
Vector3 a = p1 - p0; | |
Vector3 b = p2 - p0; | |
Vector3 c = cross(a, b); | |
float denominator = 2.0f * lengthSquared(c); | |
if (!isZero(denominator)) { | |
Vector3 d = (lengthSquared(b) * cross(c, a) + lengthSquared(a) * cross(b, c)) / denominator; | |
center = p0 + d; | |
radius = length(d) + radiusEpsilon; | |
float d0 = length(p0 - center); | |
float d1 = length(p1 - center); | |
float d2 = length(p2 - center); | |
nvDebugCheck(equal(d0, radius - radiusEpsilon)); | |
nvDebugCheck(equal(d1, radius - radiusEpsilon)); | |
nvDebugCheck(equal(d2, radius - radiusEpsilon)); | |
} | |
else { | |
// @@ This is a specialization of the code below, but really, the only thing we need to do here is to find the two most distant points. | |
// Compute all possible spheres, invalidate those that do not contain the four points, keep the smallest. | |
Sphere s0(p1, p2); | |
float d0 = distanceSquared(s0, p0); | |
if (d0 > 0) s0.radius = NV_FLOAT_MAX; | |
Sphere s1(p0, p2); | |
float d1 = distanceSquared(s1, p1); | |
if (d1 > 0) s1.radius = NV_FLOAT_MAX; | |
Sphere s2(p0, p1); | |
float d2 = distanceSquared(s2, p2); | |
if (d2 > 0) s1.radius = NV_FLOAT_MAX; | |
if (s0.radius < s1.radius && s0.radius < s2.radius) { | |
center = s0.center; | |
radius = s0.radius; | |
} | |
else if (s1.radius < s2.radius) { | |
center = s1.center; | |
radius = s1.radius; | |
} | |
else { | |
center = s2.center; | |
radius = s2.radius; | |
} | |
} | |
} | |
} | |
Sphere::Sphere(Vector3::Arg p0, Vector3::Arg p1, Vector3::Arg p2, Vector3::Arg p3) { | |
if (p0 == p1 || p0 == p2 || p0 == p3) *this = Sphere(p1, p2, p3); | |
else if (p1 == p2 || p1 == p3) *this = Sphere(p0, p2, p3); | |
else if (p2 == p3) *this = Sphere(p0, p1, p2); | |
else { | |
// @@ This only works if the points are not coplanar! | |
Vector3 a = p1 - p0; | |
Vector3 b = p2 - p0; | |
Vector3 c = p3 - p0; | |
float denominator = 2.0f * dot(c, cross(a, b)); // triple product. | |
if (!isZero(denominator)) { | |
Vector3 d = (lengthSquared(c) * cross(a, b) + lengthSquared(b) * cross(c, a) + lengthSquared(a) * cross(b, c)) / denominator; | |
center = p0 + d; | |
radius = length(d) + radiusEpsilon; | |
float d0 = length(p0 - center); | |
float d1 = length(p1 - center); | |
float d2 = length(p2 - center); | |
float d3 = length(p3 - center); | |
nvDebugCheck(equal(d0, radius - radiusEpsilon)); | |
nvDebugCheck(equal(d1, radius - radiusEpsilon)); | |
nvDebugCheck(equal(d2, radius - radiusEpsilon)); | |
nvDebugCheck(equal(d3, radius - radiusEpsilon)); | |
} | |
else { | |
// Compute all possible spheres, invalidate those that do not contain the four points, keep the smallest. | |
Sphere s0(p1, p2, p3); | |
float d0 = distanceSquared(s0, p0); | |
if (d0 > 0) s0.radius = NV_FLOAT_MAX; | |
Sphere s1(p0, p2, p3); | |
float d1 = distanceSquared(s1, p1); | |
if (d1 > 0) s1.radius = NV_FLOAT_MAX; | |
Sphere s2(p0, p1, p3); | |
float d2 = distanceSquared(s2, p2); | |
if (d2 > 0) s2.radius = NV_FLOAT_MAX; | |
Sphere s3(p0, p1, p2); | |
float d3 = distanceSquared(s3, p3); | |
if (d3 > 0) s2.radius = NV_FLOAT_MAX; | |
if (s0.radius < s1.radius && s0.radius < s2.radius && s0.radius < s3.radius) { | |
center = s0.center; | |
radius = s0.radius; | |
} | |
else if (s1.radius < s2.radius && s1.radius < s3.radius) { | |
center = s1.center; | |
radius = s1.radius; | |
} | |
else if (s1.radius < s3.radius) { | |
center = s2.center; | |
radius = s2.radius; | |
} | |
else { | |
center = s3.center; | |
radius = s3.radius; | |
} | |
} | |
} | |
} | |
float nv::distanceSquared(const Sphere & sphere, const Vector3 & point) { | |
return lengthSquared(sphere.center - point) - square(sphere.radius); | |
} | |
// Implementation of "MiniBall" based on: | |
// http://www.flipcode.com/archives/Smallest_Enclosing_Spheres.shtml | |
static Sphere recurseMini(const Vector3 *P[], uint p, uint b = 0) { | |
Sphere MB; | |
switch(b) { | |
case 0: | |
MB = Sphere(*P[0]); | |
break; | |
case 1: | |
MB = Sphere(*P[-1]); | |
break; | |
case 2: | |
MB = Sphere(*P[-1], *P[-2]); | |
break; | |
case 3: | |
MB = Sphere(*P[-1], *P[-2], *P[-3]); | |
break; | |
case 4: | |
MB = Sphere(*P[-1], *P[-2], *P[-3], *P[-4]); | |
return MB; | |
} | |
for (uint i = 0; i < p; i++) { | |
if (distanceSquared(MB, *P[i]) > 0) { // Signed square distance to sphere | |
for (uint j = i; j > 0; j--) { | |
swap(P[j], P[j-1]); | |
} | |
MB = recurseMini(P + 1, i, b + 1); | |
} | |
} | |
return MB; | |
} | |
static bool allInside(const Sphere & sphere, const Vector3 * pointArray, const uint pointCount) { | |
for (uint i = 0; i < pointCount; i++) { | |
if (distanceSquared(sphere, pointArray[i]) >= NV_EPSILON) { | |
return false; | |
} | |
} | |
return true; | |
} | |
Sphere nv::miniBall(const Vector3 * pointArray, const uint pointCount) { | |
nvDebugCheck(pointArray != NULL); | |
nvDebugCheck(pointCount > 0); | |
const Vector3 **L = new const Vector3*[pointCount]; | |
for (uint i = 0; i < pointCount; i++) { | |
L[i] = &pointArray[i]; | |
} | |
Sphere sphere = recurseMini(L, pointCount); | |
delete [] L; | |
nvDebugCheck(allInside(sphere, pointArray, pointCount)); | |
return sphere; | |
} | |
// Approximate bounding sphere, based on "An Efficient Bounding Sphere" by Jack Ritter, from "Graphics Gems" | |
Sphere nv::approximateSphere_Ritter(const Vector3 * pointArray, const uint pointCount) { | |
nvDebugCheck(pointArray != NULL); | |
nvDebugCheck(pointCount > 0); | |
Vector3 xmin, xmax, ymin, ymax, zmin, zmax; | |
xmin = xmax = ymin = ymax = zmin = zmax = pointArray[0]; | |
// FIRST PASS: find 6 minima/maxima points | |
xmin.x = ymin.y = zmin.z = FLT_MAX; | |
xmax.x = ymax.y = zmax.z = -FLT_MAX; | |
for (uint i = 0; i < pointCount; i++) { | |
const Vector3 & p = pointArray[i]; | |
if (p.x < xmin.x) xmin = p; | |
if (p.x > xmax.x) xmax = p; | |
if (p.y < ymin.y) ymin = p; | |
if (p.y > ymax.y) ymax = p; | |
if (p.z < zmin.z) zmin = p; | |
if (p.z > zmax.z) zmax = p; | |
} | |
float xspan = lengthSquared(xmax - xmin); | |
float yspan = lengthSquared(ymax - ymin); | |
float zspan = lengthSquared(zmax - zmin); | |
// Set points dia1 & dia2 to the maximally separated pair. | |
Vector3 dia1 = xmin; | |
Vector3 dia2 = xmax; | |
float maxspan = xspan; | |
if (yspan > maxspan) { | |
maxspan = yspan; | |
dia1 = ymin; | |
dia2 = ymax; | |
} | |
if (zspan > maxspan) { | |
dia1 = zmin; | |
dia2 = zmax; | |
} | |
// |dia1-dia2| is a diameter of initial sphere | |
// calc initial center | |
Sphere sphere; | |
sphere.center = (dia1 + dia2) / 2.0f; | |
// calculate initial radius**2 and radius | |
float rad_sq = lengthSquared(dia2 - sphere.center); | |
sphere.radius = sqrtf(rad_sq); | |
// SECOND PASS: increment current sphere | |
for (uint i = 0; i < pointCount; i++) { | |
const Vector3 & p = pointArray[i]; | |
float old_to_p_sq = lengthSquared(p - sphere.center); | |
if (old_to_p_sq > rad_sq) { // do r**2 test first | |
// this point is outside of current sphere | |
float old_to_p = sqrtf(old_to_p_sq); | |
// calc radius of new sphere | |
sphere.radius = (sphere.radius + old_to_p) / 2.0f; | |
rad_sq = sphere.radius * sphere.radius; // for next r**2 compare | |
float old_to_new = old_to_p - sphere.radius; | |
// calc center of new sphere | |
sphere.center = (sphere.radius * sphere.center + old_to_new * p) / old_to_p; | |
} | |
} | |
nvDebugCheck(allInside(sphere, pointArray, pointCount)); | |
return sphere; | |
} | |
static float computeSphereRadius(const Vector3 & center, const Vector3 * pointArray, const uint pointCount) { | |
float maxRadius2 = 0; | |
for (uint i = 0; i < pointCount; i++) { | |
const Vector3 & p = pointArray[i]; | |
float r2 = lengthSquared(center - p); | |
if (r2 > maxRadius2) { | |
maxRadius2 = r2; | |
} | |
} | |
return sqrtf(maxRadius2) + radiusEpsilon; | |
} | |
Sphere nv::approximateSphere_AABB(const Vector3 * pointArray, const uint pointCount) { | |
nvDebugCheck(pointArray != NULL); | |
nvDebugCheck(pointCount > 0); | |
Box box; | |
box.clearBounds(); | |
for (uint i = 0; i < pointCount; i++) { | |
box.addPointToBounds(pointArray[i]); | |
} | |
Sphere sphere; | |
sphere.center = box.center(); | |
sphere.radius = computeSphereRadius(sphere.center, pointArray, pointCount); | |
nvDebugCheck(allInside(sphere, pointArray, pointCount)); | |
return sphere; | |
} | |
static void computeExtremalPoints(const Vector3 & dir, const Vector3 * pointArray, uint pointCount, Vector3 * minPoint, Vector3 * maxPoint) { | |
nvDebugCheck(pointCount > 0); | |
uint mini = 0; | |
uint maxi = 0; | |
float minDist = FLT_MAX; | |
float maxDist = -FLT_MAX; | |
for (uint i = 0; i < pointCount; i++) { | |
float d = dot(dir, pointArray[i]); | |
if (d < minDist) { | |
minDist = d; | |
mini = i; | |
} | |
if (d > maxDist) { | |
maxDist = d; | |
maxi = i; | |
} | |
} | |
nvDebugCheck(minDist != FLT_MAX); | |
nvDebugCheck(maxDist != -FLT_MAX); | |
*minPoint = pointArray[mini]; | |
*maxPoint = pointArray[maxi]; | |
} | |
// EPOS algorithm based on: | |
// http://www.ep.liu.se/ecp/034/009/ecp083409.pdf | |
Sphere nv::approximateSphere_EPOS6(const Vector3 * pointArray, uint pointCount) { | |
nvDebugCheck(pointArray != NULL); | |
nvDebugCheck(pointCount > 0); | |
Vector3 extremalPoints[6]; | |
// Compute 6 extremal points. | |
computeExtremalPoints(Vector3(1, 0, 0), pointArray, pointCount, extremalPoints+0, extremalPoints+1); | |
computeExtremalPoints(Vector3(0, 1, 0), pointArray, pointCount, extremalPoints+2, extremalPoints+3); | |
computeExtremalPoints(Vector3(0, 0, 1), pointArray, pointCount, extremalPoints+4, extremalPoints+5); | |
Sphere sphere = miniBall(extremalPoints, 6); | |
sphere.radius = computeSphereRadius(sphere.center, pointArray, pointCount); | |
nvDebugCheck(allInside(sphere, pointArray, pointCount)); | |
return sphere; | |
} | |
Sphere nv::approximateSphere_EPOS14(const Vector3 * pointArray, uint pointCount) { | |
nvDebugCheck(pointArray != NULL); | |
nvDebugCheck(pointCount > 0); | |
Vector3 extremalPoints[14]; | |
// Compute 14 extremal points. | |
computeExtremalPoints(Vector3(1, 0, 0), pointArray, pointCount, extremalPoints+0, extremalPoints+1); | |
computeExtremalPoints(Vector3(0, 1, 0), pointArray, pointCount, extremalPoints+2, extremalPoints+3); | |
computeExtremalPoints(Vector3(0, 0, 1), pointArray, pointCount, extremalPoints+4, extremalPoints+5); | |
float d = sqrtf(1.0f/3.0f); | |
computeExtremalPoints(Vector3(d, d, d), pointArray, pointCount, extremalPoints+6, extremalPoints+7); | |
computeExtremalPoints(Vector3(-d, d, d), pointArray, pointCount, extremalPoints+8, extremalPoints+9); | |
computeExtremalPoints(Vector3(-d, -d, d), pointArray, pointCount, extremalPoints+10, extremalPoints+11); | |
computeExtremalPoints(Vector3(d, -d, d), pointArray, pointCount, extremalPoints+12, extremalPoints+13); | |
Sphere sphere = miniBall(extremalPoints, 14); | |
sphere.radius = computeSphereRadius(sphere.center, pointArray, pointCount); | |
nvDebugCheck(allInside(sphere, pointArray, pointCount)); | |
return sphere; | |
} |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// This code is in the public domain -- Ignacio Castaño <[email protected]> | |
#pragma once | |
#ifndef NV_MATH_SPHERE_H | |
#define NV_MATH_SPHERE_H | |
#include "Vector.h" | |
namespace nv | |
{ | |
class Sphere | |
{ | |
public: | |
Sphere() {} | |
Sphere(Vector3::Arg center, float radius) : center(center), radius(radius) {} | |
Sphere(Vector3::Arg center) : center(center), radius(0.0f) {} | |
Sphere(Vector3::Arg p0, Vector3::Arg p1); | |
Sphere(Vector3::Arg p0, Vector3::Arg p1, Vector3::Arg p2); | |
Sphere(Vector3::Arg p0, Vector3::Arg p1, Vector3::Arg p2, Vector3::Arg p3); | |
Vector3 center; | |
float radius; | |
}; | |
// Returns negative values if point is inside. | |
float distanceSquared(const Sphere & sphere, const Vector3 &point); | |
// Welz's algorithm. Fairly slow, recursive implementation uses large stack. | |
Sphere miniBall(const Vector3 * pointArray, uint pointCount); | |
Sphere approximateSphere_Ritter(const Vector3 * pointArray, uint pointCount); | |
Sphere approximateSphere_AABB(const Vector3 * pointArray, uint pointCount); | |
Sphere approximateSphere_EPOS6(const Vector3 * pointArray, uint pointCount); | |
Sphere approximateSphere_EPOS14(const Vector3 * pointArray, uint pointCount); | |
} // nv namespace | |
#endif // NV_MATH_SPHERE_H |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Good catch!
Looking at it more closely I noticed a few more bugs:
if (d2 > 0) s1.radius = NV_FLOAT_MAX
should beif (d2 > 0) s2.radius = NV_FLOAT_MAX
and
if (d3 > 0) s2.radius = NV_FLOAT_MAX
should beif (d3 > 0) s3.radius = NV_FLOAT_MAX
bur as you point this is not entirely correct either.
That makes sense, thanks for the clear example.
This sounds like a good idea. If I were to revisit this code I think I would use Ritter's fixup in the EPOS approximations and also to handle the edge cases as you describe.
Aha. A minor optimization, but yeah, you can reuse the already computed cross product in that case.