-
-
Save cadrev/e8399b0612ad2238c192346a746e53b5 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from keras.datasets import imdb | |
from keras.preprocessing.sequence import pad_sequences | |
from keras.models import Sequential | |
from keras.layers import containers | |
from keras.layers.noise import GaussianNoise | |
from keras.layers.core import Dense, AutoEncoder | |
from keras.utils import np_utils | |
from sklearn.metrics import (precision_score, recall_score, | |
f1_score, accuracy_score) | |
np.random.seed(1337) | |
max_len = 800 | |
max_words = 20000 | |
batch_size = 64 | |
nb_classes = 2 | |
nb_epoch = 2 | |
nb_hidden_layers = [800, 500, 300, 100] | |
nb_noise_layers = [0.6, 0.4, 0.3, ] | |
(X_train, y_train), (X_test, y_test) = \ | |
imdb.load_data(nb_words=max_words, test_split=0.2) | |
X_train = pad_sequences(X_train, maxlen=max_len, dtype='float32') | |
X_test = pad_sequences(X_test, maxlen=max_len, dtype='float32') | |
X_train_tmp = np.copy(X_train) | |
y_train = np.asarray(y_train) | |
y_test = np.asarray(y_test) | |
Y_train = np_utils.to_categorical(y_train, nb_classes) | |
Y_test = np_utils.to_categorical(y_test, nb_classes) | |
print('Train: {}'.format(X_train.shape)) | |
print('Test: {}'.format(X_test.shape)) | |
trained_encoders = [] | |
for i, (n_in, n_out) in enumerate( | |
zip(nb_hidden_layers[:-1], nb_hidden_layers[1:]), start=1): | |
print('Pre-training the layer: Input {} -> Output {}' | |
.format(n_in, n_out)) | |
ae = Sequential() | |
encoder = containers.Sequential([ | |
GaussianNoise(nb_noise_layers[i - 1], input_shape=(n_in,)), | |
Dense(input_dim=n_in, output_dim=n_out, activation='sigmoid'), | |
]) | |
decoder = Dense(input_dim=n_out, output_dim=n_in, activation='sigmoid') | |
ae.add(AutoEncoder(encoder=encoder, decoder=decoder, | |
output_reconstruction=False)) | |
ae.compile(loss='mean_squared_error', optimizer='rmsprop') | |
ae.fit(X_train_tmp, X_train_tmp, batch_size=batch_size, nb_epoch=nb_epoch) | |
trained_encoders.append(ae.layers[0].encoder) | |
X_train_tmp = ae.predict(X_train_tmp) | |
model = Sequential() | |
for encoder in trained_encoders: | |
model.add(encoder) | |
model.add(Dense(input_dim=nb_hidden_layers[-1], | |
output_dim=nb_classes, activation='softmax')) | |
model.compile(loss='categorical_crossentropy', optimizer='rmsprop') | |
model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, | |
show_accuracy=True, validation_data=(X_test, Y_test)) | |
y_pred = model.predict_classes(X_test) | |
accuracy = accuracy_score(y_test, y_pred) | |
recall = recall_score(y_test, y_pred) | |
precision = precision_score(y_test, y_pred) | |
f1 = f1_score(y_test, y_pred) | |
print('Accuracy: {}'.format(accuracy)) | |
print('Recall: {}'.format(recall)) | |
print('Precision: {}'.format(precision)) | |
print('F1: {}'.format(f1)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment