Created
October 31, 2024 06:18
-
-
Save buttercutter/a023ea3743c7dbaa1cdccd356a4b6e48 to your computer and use it in GitHub Desktop.
Exercise for qosf
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
import time | |
from qiskit import QuantumCircuit | |
from qiskit_aer import AerSimulator | |
from qiskit.quantum_info import Operator | |
# Define basic quantum gates | |
def get_X(): | |
return np.array([[0, 1], [1, 0]]) | |
def get_H(): | |
return np.array([[1, 1], [1, -1]]) / np.sqrt(2) | |
def get_I(): | |
return np.array([[1, 0], [0, 1]]) | |
def get_CNOT(): | |
return np.array([[1, 0, 0, 0], | |
[0, 1, 0, 0], | |
[0, 0, 0, 1], | |
[0, 0, 1, 0]]) | |
class NaiveStatevectorSimulator: | |
def __init__(self, num_qubits): | |
self.num_qubits = num_qubits | |
# Initialize state to |0...0> | |
self.state = np.zeros(2**num_qubits) | |
self.state[0] = 1 | |
def apply_single_qubit_gate(self, gate, target_qubit): | |
# Construct the full operator using kronecker products | |
operator = np.array([[1]]) | |
for i in range(self.num_qubits): | |
if i == target_qubit: | |
operator = np.kron(operator, gate) | |
else: | |
operator = np.kron(operator, get_I()) | |
self.state = operator @ self.state | |
def apply_CNOT(self, control, target): | |
if control >= self.num_qubits or target >= self.num_qubits: | |
raise ValueError("Qubit index out of range") | |
# Construct CNOT matrix for the specific control and target qubits | |
operator = np.eye(2**self.num_qubits) | |
for i in range(2**self.num_qubits): | |
binary = format(i, f'0{self.num_qubits}b') | |
if binary[control] == '1': | |
# Flip the target qubit | |
new_binary = list(binary) | |
new_binary[target] = '1' if binary[target] == '0' else '0' | |
new_i = int(''.join(new_binary), 2) | |
# Swap rows | |
operator[i], operator[new_i] = operator[new_i].copy(), operator[i].copy() | |
self.state = operator @ self.state | |
def measure_runtime(max_qubits): | |
qubit_range = range(1, max_qubits + 1) | |
times = [] | |
for n in qubit_range: | |
start_time = time.time() | |
# Create and run a test circuit | |
sim = NaiveStatevectorSimulator(n) | |
# Apply some test operations | |
sim.apply_single_qubit_gate(get_H(), 0) | |
if n > 1: | |
sim.apply_CNOT(0, 1) | |
sim.apply_single_qubit_gate(get_X(), 0) | |
elapsed_time = time.time() - start_time | |
times.append(elapsed_time) | |
print(f"Completed simulation for {n} qubits in {elapsed_time:.4f} seconds") | |
return qubit_range, times | |
# Run the benchmark | |
max_qubits = 10 # Adjust this based on your computer's capabilities | |
qubit_range, times = measure_runtime(max_qubits) | |
# Plot the results | |
plt.figure(figsize=(10, 6)) | |
plt.plot(qubit_range, times, 'bo-') | |
plt.yscale('log') | |
plt.xlabel('Number of Qubits') | |
plt.ylabel('Runtime (seconds)') | |
plt.title('Quantum Circuit Simulation Runtime vs Number of Qubits') | |
plt.grid(True) | |
plt.show() | |
# Test the simulator with a simple circuit | |
test_sim = NaiveStatevectorSimulator(2) | |
print("\nInitial state:", test_sim.state) | |
# Apply Hadamard to first qubit | |
test_sim.apply_single_qubit_gate(get_H(), 0) | |
print("After H on qubit 0:", test_sim.state) | |
# Apply CNOT | |
test_sim.apply_CNOT(0, 1) | |
print("After CNOT:", test_sim.state) | |
# Apply X to first qubit | |
test_sim.apply_single_qubit_gate(get_X(), 0) | |
print("Final state:", test_sim.state) |
Author
buttercutter
commented
Oct 31, 2024
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment