Created
April 24, 2023 16:12
-
-
Save bungernut/2ae6f2ec3e4164d902ae73e0d5abcf6c to your computer and use it in GitHub Desktop.
RnGenerationalConcentrationPlot.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"provenance": [], | |
"mount_file_id": "1_IdSLdTyhZAshD1y7hQsUEg9DuNDExeK", | |
"authorship_tag": "ABX9TyPbgPpEmhjfuw62mYZozqJ6", | |
"include_colab_link": true | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
}, | |
"language_info": { | |
"name": "python" | |
} | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/bungernut/2ae6f2ec3e4164d902ae73e0d5abcf6c/rngenerationalconcentrationplot.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"id": "iha4ljYGd-rE" | |
}, | |
"outputs": [], | |
"source": [ | |
"from matplotlib import pyplot as plt\n", | |
"import numpy as np\n", | |
"from google.colab import drive" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"# uBq/kg (cv, -, +, FV) \n", | |
"xenon10 = (59, 2, 2, 14) #https://doi.org/10.1016/j.astropartphys.2011.01.006\n", | |
"xenon10_220 = (4.7, 0.2, 0.2, 14) #https://doi.org/10.1016/j.astropartphys.2011.01.006\n", | |
"\n", | |
"xenon100 = (33.4, 1.3, 1.3, 62.) #https://doi.org/10.1140/epjc/s10052-017-4902-x\n", | |
"xenon100p2 = (45.4, 1.4, 1.4, 62.) #https://doi.org/10.1140/epjc/s10052-017-4902-x replaced a pump for phase2\n", | |
"xenon100_dist = (23.1, 0.7, 0.7, 62.) #https://doi.org/10.1140/epjc/s10052-017-4902-x\n", | |
"\n", | |
"LUX = (17.9/250*1000, (0.2**2+1.3**2)**(.5)/250*1000, (0.2**2+1.3**2)**(.5)/250*1000, 250.) #250kg active https://doi.org/10.1016/j.phpro.2014.12.067 #TODO disagree w/ Christian\n", | |
"\n", | |
"Pandax2 = (6.507/580*1000, 0, 0, 580.) #Andi Tan Thesis\n", | |
"PandasX4T = (4.2, 0.1, 0.1, 3700) # https://doi.org/10.1103/PhysRevLett.127.261802 \n", | |
"# PandaX-4T expecting to reduce by x1.8 w/ distillation on https://arxiv.org/pdf/2012.02436.pdf\n", | |
"\n", | |
"XMASS = (8.2/835*1000, 0.5/835*1000, 0.5/835*1000, 835.) #835kg active https://doi.org/10.1016/j.nima.2013.03.059\n", | |
"# Interisting from https://doi.org/10.1063/1.3579569 requirmeent for XMASS was 0.6mBq Rn222, but ESC sensitivity was only able to say < 15 mBq\n", | |
"\n", | |
"XENON1T_SR1 = (13.3, 0.5, 0.5, 2000.) #https://doi.org/10.1140/epjc/s10052-020-08777-z\n", | |
"# SR2 10.6 mBq/3.3 uBq/kg --> reduction of 19.2 mBq, i'm confused\n", | |
"XENON1T_SR2 = (6.5, 0.1, 0.1, 2000.) #https://doi.org/10.1140/epjc/s10052-020-08777-z digitized Fig3\n", | |
"XENON1T_SR2_dist = (4.5, 0.1, 0.1, 2000.) #https://doi.org/10.1140/epjc/s10052-020-08777-z\n", | |
"\n", | |
"XENONnT = (4.2, 0.7, 0.5, 5900.) #\n", | |
"XENONnT_Dist = (1, (0.006**2 + 0.072**2)**0.5, (0.006**2 + 0.072**2)**0.5, 5900.) #reduction factor of 4.7? https://doi.org/10.1140/epjc/s10052-022-11001-9\n", | |
"\n", | |
"LZ = (3.26, 0, 0, 7000.) # https://arxiv.org/abs/2207.03764\n", | |
"\n", | |
"mass = np.array([xenon10[3], xenon100[3], LUX[3], Pandax2[3], XMASS[3], XENON1T_SR2[3], PandasX4T[3], XENONnT[3], LZ[3]])\n", | |
"rn_xe = np.array([xenon10[0], xenon100[0], LUX[0], Pandax2[0], XMASS[0], XENON1T_SR2[0], PandasX4T[0], XENONnT[0], LZ[0]])\n", | |
"#mass = np.array([xenon10[3], xenon100[3], Pandax2[3], XMASS[3], XENON1T_SR2[3], PandasX4T[3], XENONnT[3], LZ[3]])\n", | |
"#rn_xe = np.array([xenon10[0], xenon100[0], Pandax2[0], XMASS[0], XENON1T_SR2[0], PandasX4T[0], XENONnT[0], LZ[0]])\n", | |
"\n", | |
"#mass = np.array([xenon10[3], xenon100[3], Pandax2[3], XMASS[3], XENON1T_SR1[3], XENONnT[3]])\n", | |
"#rn_xe = np.array([xenon10[0], xenon100[0], Pandax2[0], XMASS[0], XENON1T_SR1[0], XENONnT[0]])\n", | |
"\n", | |
"G3 = (0.1, 0, 0, 40000.)\n", | |
"\n", | |
"EXO200 = (3.65, 0.37, 0.37, 110.) # https://doi.org/10.1103/PhysRevC.92.015503\n", | |
"nEXO = (1.26*1000/5000, 0, 0, 3500.)" | |
], | |
"metadata": { | |
"id": "6he1YQ_meuir" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"print(LUX)\n", | |
"print(Pandax2)\n", | |
"print(nEXO)\n", | |
"from scipy.optimize import curve_fit\n", | |
"\n", | |
"def powlaw(x, a, b) :\n", | |
" return a * np.power(x, b)\n", | |
"def linlaw(x, a, b) :\n", | |
" return a + x * b\n", | |
"def curve_fit_log(xdata, ydata) :\n", | |
" \"\"\"Fit data to a power law with weights according to a log scale\"\"\"\n", | |
" # Weights according to a log scale\n", | |
" # Apply fscalex\n", | |
" xdata_log = np.log10(xdata)\n", | |
" # Apply fscaley\n", | |
" ydata_log = np.log10(ydata)\n", | |
" # Fit linear\n", | |
" popt_log, pcov_log = curve_fit(linlaw, xdata_log, ydata_log)\n", | |
" #print(popt_log, pcov_log)\n", | |
" # Apply fscaley^-1 to fitted data\n", | |
" ydatafit_log = np.power(10, linlaw(xdata_log, *popt_log))\n", | |
" # There is no need to apply fscalex^-1 as original data is already available\n", | |
" return (popt_log, pcov_log, ydatafit_log)\n", | |
"\n", | |
"powerfit = curve_fit_log(mass, rn_xe)\n", | |
"print(powerfit)" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "cUZrvTTRnAOZ", | |
"outputId": "a0d2a5a0-b873-40ef-c88e-176a000ae8c9" | |
}, | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"(71.6, 5.261178575186363, 5.261178575186363, 250.0)\n", | |
"(11.21896551724138, 0, 0, 580.0)\n", | |
"(0.252, 0, 0, 3500.0)\n", | |
"(array([ 2.51693677, -0.50528612]), array([[ 0.06620849, -0.02135455],\n", | |
" [-0.02135455, 0.0075349 ]]), array([86.65910235, 40.85696785, 20.19719102, 13.20124732, 10.98118362,\n", | |
" 7.06272243, 5.17575813, 4.08862797, 3.75026631]))\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"from matplotlib.projections.polar import PolarTransform\n", | |
"fig1 = plt.figure(\"fig1\", figsize=(5,4), dpi=200)\n", | |
"afs=8\n", | |
"# Dark Matter\n", | |
"plt.plot(xenon10[3],xenon10[0],'go')\n", | |
"#plt.errorbar(xenon10[3],xenon10[0], yerr=xenon10[1], ecolor='k')\n", | |
"plt.annotate('XENON10', xy=(xenon10[3],xenon10[0]+10), ha='center', va='bottom', rotation=90, size=afs)\n", | |
"\n", | |
"plt.plot(xenon100[3],xenon100[0],'go')\n", | |
"#plt.errorbar(xenon100[3],xenon100[0], yerr=xenon100[1], ecolor='k')\n", | |
"#plt.plot(xenon100p2[3],xenon100p2[0],'o')\n", | |
"#plt.errorbar(xenon100p2[3],xenon100p2[0], yerr=xenon100p2[1], ecolor='k')\n", | |
"plt.plot(xenon100_dist[3],xenon100_dist[0],'o', color='yellow', mec='g')\n", | |
"#plt.errorbar(xenon100_dist[3],xenon100_dist[0], yerr=xenon100_dist[1], ecolor='k')\n", | |
"plt.annotate('XENON100', xy=(xenon100[3],xenon100[0]+5), ha='center', va='bottom', rotation=90, size=afs)\n", | |
"plt.annotate('w/ Distill', xy=(xenon100_dist[3],xenon100_dist[0]-5), ha='center', va='top', rotation=90, size=afs)\n", | |
"\n", | |
"plt.plot(XENON1T_SR1[3],XENON1T_SR1[0],'o', color='m', mec='g')\n", | |
"#plt.errorbar(XENON1T_SR1[3],XENON1T_SR1[0], yerr=XENON1T_SR1[1], ecolor='k')\n", | |
"plt.plot(XENON1T_SR2[3],XENON1T_SR2[0], 'go')\n", | |
"#plt.errorbar(XENON1T_SR2[3],XENON1T_SR2[0], yerr=XENON1T_SR2[1], ecolor='k')\n", | |
"plt.plot(XENON1T_SR2_dist[3],XENON1T_SR2_dist[0], 'o', color='yellow', mec='g')\n", | |
"#plt.errorbar(XENON1T_SR2_dist[3],XENON1T_SR2_dist[0], yerr=XENON1T_SR2_dist[1], ecolor='k')\n", | |
"plt.annotate('XENON1T SR1', xy=(XENON1T_SR1[3],XENON1T_SR1[0]+1.5), ha='center', va='bottom', rotation=90, size=afs)\n", | |
"plt.annotate('XENON1T SR2', xy=(XENON1T_SR1[3]-100,XENON1T_SR1[0]-6), ha='right', va='top', rotation=90, size=afs)\n", | |
"plt.annotate('w/ Distill', xy=(XENON1T_SR1[3]+100,XENON1T_SR1[0]-9.5), ha='center', va='top', rotation=90, size=afs)\n", | |
"#plt.annotate('XENON1T SR2\\nw/ Distill', xy=(XENON1T_SR1[3],XENON1T_SR1[0]-9), ha='center', va='top', rotation=90, size=afs)\n", | |
"\n", | |
"plt.plot(XENONnT[3],XENONnT[0],'go')\n", | |
"#plt.errorbar(XENONnT[3],XENONnT[0], yerr=XENONnT[1], ecolor='k')\n", | |
"plt.annotate('XENONnT', xy=(XENONnT[3],XENONnT[0]+1), ha='center', va='bottom', rotation=90, size=afs)\n", | |
"\n", | |
"plt.plot(XENONnT_Dist[3],XENONnT_Dist[0],'o', color='yellow', mec='g')\n", | |
"#plt.errorbar(XENONnT_Dist[3],XENONnT_Dist[0], yerr=XENONnT_Dist[1], ecolor='k')\n", | |
"plt.annotate('XENONnT\\nw/ Distill', xy=(XENONnT_Dist[3],XENONnT_Dist[0]-0.1), ha='center', va='top', rotation=90, size=afs)\n", | |
"\n", | |
"\n", | |
"plt.plot(LUX[3],LUX[0],'go')\n", | |
"#plt.errorbar(LUX[3],LUX[0], yerr=LUX[1], ecolor='k')\n", | |
"plt.annotate('LUX', xy=(LUX[3],LUX[0]+15), ha='center', va='bottom', rotation=90, size=afs)\n", | |
"\n", | |
"plt.plot(LZ[3],LZ[0],'go')\n", | |
"#plt.errorbar(LZ[3],LZ[0], yerr=LZ[1], ecolor='k')\n", | |
"plt.annotate('LZ', xy=(LZ[3],LZ[0]-.3), ha='center', va='top', rotation=90, size=afs)\n", | |
"\n", | |
"plt.plot(Pandax2[3],Pandax2[0],'go')\n", | |
"#plt.errorbar(Pandax2[3],Pandax2[0], yerr=Pandax2[1], ecolor='k')\n", | |
"plt.annotate('PandaX-II', xy=(Pandax2[3],Pandax2[0]+2), ha='center', va='bottom', rotation=90, size=afs)\n", | |
"plt.plot(PandasX4T[3],PandasX4T[0],'go')\n", | |
"plt.annotate('PandaX-4T', xy=(PandasX4T[3],PandasX4T[0]+1), ha='center', va='bottom', rotation=90, size=afs)\n", | |
"\n", | |
"plt.plot(XMASS[3],XMASS[0],'go')\n", | |
"#plt.errorbar(XMASS[3],XMASS[0], yerr=XMASS[1], ecolor='k')\n", | |
"plt.annotate('XMASS', xy=(XMASS[3],XMASS[0]+2), ha='center', va='bottom', rotation=90, size=afs)\n", | |
"\n", | |
"\n", | |
"# EXO\n", | |
"plt.plot(EXO200[3],EXO200[0],'bo', alpha=0.8)\n", | |
"#plt.errorbar(EXO200[3],EXO200[0], yerr=EXO200[1], ecolor='k')\n", | |
"plt.annotate('EXO-200', xy=(EXO200[3],EXO200[0]-1), ha='center', va='top', rotation=90, size=afs)\n", | |
"\n", | |
"# Future\n", | |
"plt.plot(nEXO[3], nEXO[0], 'bo', fillstyle='none',markeredgewidth=2, ms=10)\n", | |
"plt.annotate('nEXO', xy=(nEXO[3],nEXO[0]-.05), ha='center', va='top', rotation=90, size=afs)\n", | |
"\n", | |
"plt.plot(G3[3], G3[0], 'gs', fillstyle='none', markeredgewidth=2, ms=10)\n", | |
"plt.annotate('XLZD', xy=(G3[3]-4000, G3[0]+0.04), ha='center', va='bottom', rotation=90, size=afs)\n", | |
"\n", | |
"x = np.linspace(xenon10[3],G3[3],100)\n", | |
"x2 = np.linspace(EXO200[3],nEXO[3],10)\n", | |
"y = 90*x**(-1./3) #90*x**(2./3)/x\n", | |
"y2 = 18*x2**(-1./3) #90*x**(2./3)/x\n", | |
"f = y2[-1]/nEXO[0]\n", | |
"yfit = np.power(10, linlaw(np.log10(x), *powerfit[0]))\n", | |
"yfit2 = np.power(10, linlaw(np.log10(x2), *powerfit[0]))\n", | |
"#plt.plot(x,y, 'g--', label='S/V = x^(-1/3)')\n", | |
"#plt.plot(x2,y2, 'b--', label='S/V = x^(-1/3)')\n", | |
"#plt.plot(x,y2*60/y2[0], ls='-.', label='S/V=3/r')\n", | |
"#plt.vlines(nEXO[3], nEXO[0], y2[-1], colors='r', linestyles='--')\n", | |
"#plt.annotate('%.1fx'%(y2[-1]/nEXO[0]), xy=(nEXO[3],.4), ha='right', color='r')\n", | |
"#plt.vlines(G3[3], G3[0], y[-1], colors='r', linestyles='--')\n", | |
"#plt.annotate('%.1fx'%(y[-1]/G3[0]), xy=(G3[3],.4), ha='right', color='r')\n", | |
"# Power Fit\n", | |
"plt.plot(x,yfit,'g--', label='PowerFit')\n", | |
"plt.plot(x2,yfit2*.125, 'b--', label='PowerFit')\n", | |
"plt.vlines(nEXO[3], nEXO[0], yfit2[-1]*0.125, colors='r', linestyles='--')\n", | |
"plt.annotate('%.1fx'%(yfit2[-1]*0.125/nEXO[0]), xy=(nEXO[3],.4), ha='right', color='r')\n", | |
"plt.vlines(G3[3], G3[0], yfit[-1], colors='r', linestyles='--')\n", | |
"\n", | |
"plt.vlines(EXO200[3], EXO200[0], EXO200[0]*8.0, colors='r', linestyle='--')\n", | |
"plt.annotate('8.0x', xy=(EXO200[3],9), ha='left', color='r')\n", | |
"\n", | |
"plt.annotate('%.1fx'%(yfit[-1]/G3[0]), xy=(G3[3],.4), ha='right', color='r')\n", | |
"plt.annotate('y$\\propto$x$^{%.2f}$ (fit)'%powerfit[0][1], xy=(14,.1), color='g',size=12)\n", | |
"\n", | |
"#plt.legend()\n", | |
"\n", | |
"\n", | |
"plt.yscale('log')\n", | |
"plt.xscale('log')\n", | |
"plt.ylim(.05, 350)\n", | |
"plt.ylabel('$^{222}$Rn Concentration ($\\mu$Bq/kg)')\n", | |
"plt.xlabel('Fiducial Mass (kg)')\n", | |
"plt.tight_layout()\n", | |
"plt.savefig('/content/drive/MyDrive/nEXO/BM ECA2023/RnGenerationPlt.png', dpi=300)" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 797 | |
}, | |
"id": "ewA7ZWXynBQv", | |
"outputId": "7cc63eec-edda-4af9-a89d-556b348d4223" | |
}, | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<Figure size 1000x800 with 1 Axes>" | |
], | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA9MAAAMMCAYAAABQZfS/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3zN1xvA8c+5WSRmEXvPWCUxS62iOrR2tVoiSrSle2hpUbSoqqrRqBG0tUXpsn5WqZEYRYSWEDOiaCKRfX5/3CRWErnJnfG8X6/7yr3f7znf7xMi7nPPOc9RWmuEEEIIIYQQQgiRcwZbByCEEEIIIYQQQjgaSaaFEEIIIYQQQggTSTIthBBCCCGEEEKYSJJpIYQQQgghhBDCRJJMCyGEEEIIIYQQJpJkWgghhBBCCCGEMJEk00IIIYQQQgghhIkkmRZCCCGEEEIIIUwkybQQQgghhBBCCGEiSaaFEEIIIYQQQggTSTIthBBCCCGEEEKYSJJpIYQQQgghhBDCRJJMCyGEEEIIIYQQJpJkWgghhBBCCCGEMJEk00IIIYQQQgghhIkkmRZCCCGEEEIIIUwkybQQQgghhBBCCGEiZ1sHIPIfpZQb0CDtZRSQYsNwhBBCCCGEEMIJKJX2/LDWOiGvF5RkWlhCA2CfrYMQQgghhBBCiEw0BYLzehGZ5i2EEEIIIYQQQphIRqaFJUSlP9m7dy9ly5a1ZSxCCCGEEEKIB9zFixdp1qxZ+suo7NrmlCTTwhIy1kiXLVuWChUq2DIWIYQQQgghhLidWWo6yTRvIYQQQgghhBDCRJJMCyGEEEIIIYQQJpJkWgghhBBCCCGEMJEk00IIIYQQQgghhIkkmRZCCCGEEEIIIUwkybQQQgghhBBCCGEiSaaFEEIIIYQQQggTyT7TIs+UUkfvOiQ/V0IIIYQQQoh8TUamhRBCCCGEEEIIE8kIosgzrXW9218rpSoAZ20UjhBCCCGEEEJYnIxMCyGEEEIIIYQQJpKRaZHv7NmzhwMHDhAeHk50dDQARYoUoUqVKnh7e9O8eXMbRyiEEEIIIYRwdJJMi3xj1qxZfP7551y4cCHbduXLl+fDDz/klVdesVJkQgghhBBCiPxGkmmRL/Tt25cVK1agtcbV1ZV69epRsWJFChUqBMCNGzc4e/YsR48e5dy5cwwbNoxt27axdOlSG0cuhBBCCCGEcESSTAuH991337F8+XLKlSvHpEmT6NmzJwUKFMi0bXx8PCtXrmTEiBGsWLGCjh078vLLL1s5YiGEEEIIIYSjU1prW8cg8pnbq3mfPXuWChUqWPR+LVq04MiRIxw9epTKlSvnqE94eDgNGjSgfv367N6926LxCSGEEEIIIWzr3LlzVKxYMf1lRa31ubxeU6p5C4cXGhpKx44dc5xIA1StWpWOHTsSGhpqwciEEEIIIYQQ+ZUk00IIIYQQQgghhIkkmRYOz8vLi82bNxMREZHjPqdPn2bTpk14eXlZMDIhhBBCCCFEfiXJtHB4fn5+xMbG8uijj7J06VISExOzbJuYmMiSJUto06YNN2/elOJjQgghhBBCiFyRAmTC7KxdgExrTa9evQgKCkIphZubG/Xq1aNSpUp4eHgAEBsbS0REBEePHiUhIQGtNT169GDlypUWjU0IIYQQQghhe5YoQCbJtDA7ayfTAKmpqUyfPp3Jkydz6dKlbNuWKVOGDz74gOHDh2MwyOQMIYQQQggh8jtJpoVDsEUynU5rzZ9//smBAwcIDw8nJiYGgMKFC1OlShW8vb1p2bIlSimrxSSEEEIIIYSwLUsk0855vYAQ9kQpxSOPPMIjjzxi61CEEEIIIYQQ+ZjMcRVCCCGEEEIIIUwkybQQQgghhBBCCGEiSabFA6tHjx5Ur17d1mEIIYQQQgghHJAk0+KBdfHiRU6fPm3rMIQQQgghhBAOSJJpIYQQQgghhBDCRFLNWzi8Xbt25apf+rZZQgghhBBCCGEqSaaFw2vdunWu9o3WWst+00IIIYQQQohckWRa5BuVKlUyqf3FixdJSkqyUDRCCCGEEEKI/EySaeHwKleuTEREBLt27aJs2bI57teyZUv27t1rwciEEEIIIYQQ+ZUUIBMOz8fHB4ADBw7YOBIhhBBCCCHEg0KSaeHwfHx80FoTEhJi61CEEEIIIYQQDwiZ5i0cXuvWrXn44Ye5ceOGSf1efvllunTpYqGohBBCCCGEEPmZ0lrbOgaRzyilKgBnAc6ePUuFChVsHJEQQgghhBDiQXbu3DkqVqyY/rKi1vpcXq8pI9Miz5RSR+86JD9XQgghhBBCiHxN1kwLIYQQQgghhBAmkhFEkWda63q3v759mrcQQgghhBBC5EeSTAuH5+fnl+u+SinmzZtnxmiEEEIIIYQQDwIpQCbMztoFyAwGA0opTPlZTm+vlCIlJcWC0Ql7dOLECYKCgjhw4ADh4eFER0cDUKRIEapUqYK3tzfdu3enVq1aNo5UCCGEEEKYgyUKkEkyLczO2sn0hAkTTGofFRXF3LlziYuLk2T6AXP16lWGDh3KqlWrALL8AEYpBUCvXr2YPXs2Dz30kNViFEIIIYQQ5ifVvIXIxMiRI3PULi4ujilTphAYGEhcXBwuLi4MGTLEwtEJexEbG0vr1q0JCwvDYDDQqlUrmjRpQsWKFSlUqBAAN27c4OzZswQHB7Nr1y5WrlzJkSNH2Lt3Lx4eHjb+DoQQQgghhD2RZFrkeykpKQQEBDBu3DguX74MQJ8+fZgwYQLVq1e3cXTCWj7//HPCwsJ47LHHmDdvHpUqVcq2/ZkzZxg0aBBbtmxh4sSJjBs3zkqRCiGEEEIIRyDTvIXZWXuad3aWL1/OqFGjOHnyJFprHnvsMSZNmoS3t7fNYhK24eXlRXR0NCdPnqRAgQI56nPz5k1q1KhB4cKFCQsLs3CEQgghhBDCUiwxzVv2mRb50ubNm2natCnPP/88//zzD40aNWL9+vVs3LhREukH1JkzZ3j00UdznEgDFCxYkEcffZSIiAgLRiaEEEIIIRyRTPMW+crBgwf54IMP2LRpE1prqlWrxvjx4+nbt6+tQxM25uHhQWRkpMn9Ll++LOulhRBCCCHEPWRkWuQL4eHhvPDCCzRp0oSNGzdSqlQppk+fTlhYmCTSAoCmTZuyY8cONmzYkOM+69evZ9u2bTRr1syCkQkhhBBCCEckybRweK+//jpeXl4sW7YMd3d3xowZw8mTJxk2bBjOzjL5Qhi9/fbbpKam8vTTTzN06FC2bdtGbGzsPe1iY2PZtm0b/v7+dO3aFYB33nnH2uEKIYQQQgg7JwXIhNlZuwCZwWBAKYW7uzuDBg3C09PTpP4fffSRhSIT9uarr77i3XffveNYsWLFMqZxx8bGcv36dcC4B7VSiqlTp/LGG29YO1QhhBBCCGFGlihAJsm0MDtbJNO33TvH/dKTpZSUFEuEJezUwYMH+eyzz/j111+Ji4vLtI27uztPPfUUI0aMoHHjxlaOUAghhBBCmJslkmmZAysc3oABA2wdgnAgjRo1Yvny5SQlJXHixAnCw8OJiYkBoHDhwlSpUoXatWvj4uJi40iFEEIIIYQ9k5FpYXb2tM+0EEIIIYQQQsg+00IIIYQQQgghhB2Qad5CiAfSnj17OHDgAOHh4URHRwNQpEgRqlSpgre3N82bN7dxhEIIIYQQwp5JMi3ylZSUFH788UfWrl1LcHAwUVFRAJQqVQofHx+effZZnn/+edky6wE2a9YsPv/8cy5cuJBtu/Lly/Phhx/yyiuvWCkyIYQQQgjhSGTNtDA7W62ZDg4Opm/fvoSHhwPGat2ZxEaVKlVYsmQJzZo1s0pcwn707duXFStWoLXG1dWVevXqUbFiRQoVKgTAjRs3OHv2LEePHiUxMRGlFL1792bp0qU2jlwIIYQQQuSFVPMWIgu7du2iY8eOxMfH4+rqSufOnWnatCmlS5dGa83ly5fZu3cvGzZsIDw8nLZt27Jx40Zat25t69CFlXz33XcsX76ccuXKMWnSJHr27EmBAgUybRsfH8/KlSsZMWIEK1asoGPHjrz88stWjlgIIYQQQtgzGZkWZmftkenY2Fhq1KhBZGQkvXv35ptvvsHT0zPTtpGRkQwfPpyVK1dSpkwZ/v77bzw8PCwan7APLVq04MiRIxw9epTKlSvnqE94eDgNGjSgfv367N6928IRCiGEEEIIS5Fq3kJkIiAggMjISF566SWWLVuWZSINULp0aZYvX86LL75IZGQkAQEBVoxU2FJoaCgdO3bMcSINULVqVTp27EhoaKgFIxNCCCGEEI5Ikmnh8NauXUvBggWZPn16jvtMnz4dNzc31q5da8HIhBBCCCGEEPmVJNPC4R07doxWrVpRtGjRHPcpVqwYrVu35tixYxaMTNgTLy8vNm/eTERERI77nD59mk2bNuHl5WXByIQ1/fDDD7nqd/HiRbp27WrmaIQQQgjhyCSZFg7v+vXr2U7tzoqnpyfXr183f0DCLvn5+REbG8ujjz7K0qVLSUxMzLJtYmIiS5YsoU2bNty8eVOKj+UjL730Er179+bKlSs57rN48WLq16/Pr7/+asHIhBBCCOFopJq3cHjFixcnMjLS5H6RkZEUK1bM/AEJuzRkyBA2bNhAUFAQ/fr1w83NjXr16lGpUqWMInSxsbFERERw9OhREhIS0FrTo0cPBg8ebOPohbmUKlWKVatW8ccffzB79my6deuWZdvIyEiGDBnCzz//jNaa559/3nqBCiGEEMLuSTVvYXbWrubdvn179uzZw/nz5ylevHiO+ly9epUKFSrQvHlztmzZYtH4hP1ITU1l+vTpTJ48mUuXLmXbtkyZMnzwwQcMHz4cg0Em8eQXV65cwd/fn6CgIJRS9OvXj+nTp9/zwdoPP/zAG2+8wdWrV/H09OTbb7/NNvEWQgghhH2zRDVvSaaF2Vk7mZ46dSrvvvsu/fr1Y/HixTnq069fP5YuXcqUKVN46623LBqfsD9aa/78808OHDhAeHg4MTExABQuXJgqVarg7e1Ny5YtUUrZOFJhKd9//z1vvPEG169fp1y5csydO5fHH3+cy5cv4+/vz9q1a9Fa89xzzzFjxgxKlChh65CFEEIIkQeSTAuHYO1kOi4ujurVq3P58mV69uzJjBkzst1netiwYaxatYrSpUtz8uRJ3N3dLRqfEMI+Xbx4ET8/P9avX49Sih49erB161b+/fdfSpUqxaxZs+jZs6etwxRCCCGEGUgyLRyCtZNpgJ07d9KxY0cSExNxcXGhc+fONGvWjNKlSwPGJHrPnj1s3LiRpKQkXFxc2LRpE61bt7Z4bEII+zZx4kQ++uijjJkIzz77LHPmzKFkyZI2jkwIIYQQ5mKJZFoKkIl8oVWrVmzdupW+ffty5swZfv75Z3755Zc72qR/cFS5cmWWLFlCixYtbBGqEMKOrFu3LmOP+vTfEYcPH+b48eOSTAshhBAiW1JVR+QbzZs358SJEwQGBtKtWzcqVKiAm5sbbm5ulC9fnmeffZb58+dz4sQJSaRFjvXo0YPq1avbOgxhZtHR0fj6+tKtWzcuXbrEM888w+7du2nbti0nT56kbdu2vPPOOyQkJNg6VCGEEELYKZnmLczOFtO8hbCUli1bsnfvXlJSUmwdijCTjRs3MmjQIM6fP0+RIkX4+uuv6d+/f8b5adOmMXLkSOLj46lduzaBgYE0a9bMhhELIYQQIq8sMc1bRqaFEEI8MIYOHUqXLl04d+4cnTt35siRI3ck0gBvvvkmBw4coFmzZoSFhdGqVSs+/PBDkpKSbBS1EEIIIeyRjEwLs5ORaWGPdu3alat+Q4YM4dixYzIynU8YDAYKFSrElClTGDJkSLZtU1NTmTRpEmPHjiUpKYm6dety+PBhK0UqhBBCCHOSat7CIVg7mfbz88t1X6UU8+bNM2M0wl4ZDIZc7RuttUYpJcl0PtGhQwfmz59PlSpVctwnffT60KFD8nMgHii//fYbUVFR98zeEEIIRyTJtMgVpVR5oDfwJFAHKANcBXYCk7XWe8x8P6sm0+lJkik/y+ntJUl6cKT/nFSqVMmkfhcvXiQpKUl+Th5wycnJjB8/njFjxtg6FCGsRmpGCCHyE9kaS+TWcOAD4CSwAYgCagLdgG5KqRe01stsF17ejBs3zqT2UVFRzJ07l7i4OAtFJOxR5cqViYiIYNeuXZQtWzbH/dLfTIoHm7OzsyTSQgghhLiDJNMPhr1AO631ttsPKqUeBTYDs5VSa7TWDrkHzMiRI3PULi4ujilTphAYGEhcXBwuLi73XTMp8g8fHx8iIiI4cOCAScm0EEIIIYQQmZFk+gGgtV6dxfEdSqktQGegARBs1cCsJCUlhYCAAMaNG8fly5cB6NOnDxMmTJD9gx8gPj4+rF69mpCQEJ588klbhyNsJCc1FpRSFCpUiEqVKtGhQwcaN25shciEsJzOnTvnqt+xY8fMHIkQQuQvkkxbmFLKE2iW9mia9iiRdnqh1trXhGtVBl4HngIqAgkYp24vB2ZqrXMzbzl9r5fkXPS1e8uXL2fUqFGcPHkSrTWPPfYYkyZNwtvb29ahCStr3bo1Dz/8MDdu3DCp38svv0yXLl0sFJWwtsDAwBzVWLi9WF2nTp1YtGgRnp6elg5PCIvYtGmTybVF0uWmcKMQQjwopACZhSmlsvsDznEyrZTqCnwPFMmiyQngKa31PybEVimt31WMi/DNUmHEHrbG2rx5MyNGjGD//v1orWncuDETJ06kU6dOVo9FCGE/fH1975scaK25ceMGf//9N4cPH0YpRcOGDdmzZw+urq5WilQI8/Hw8CA+Pp7Zs2fj5uaW437jxo0jPDxcCpAJIfIFKUDm+CKAMIzTqnNMKdUYWAYUBG4AnwNb0l73BQYDtYBflFJNtNYxObimC7AYcAM+MFcibWsHDx7kgw8+YNOmTWitqVatGuPHj6dv3762Dk0IYQcCAwNNan/8+HFefPFF9u/fz7x583jllVcsE5gQFtSoUSN2795NkyZNTJqZ9e233xIeHm7ByIQQwrEZbB3AA+BToCtQRmtdGfDPxTW+xpg4JwOdtdafaa3/1Fr/T2s9BHg/rV0t4J37XUwpZQACgTbAd1rrxbmIya6Eh4fzwgsv0KRJEzZu3EipUqWYPn06YWFhkkgLIXKtdu3a/PTTT7i6urJy5UpbhyNErvj4+ACwf/9+G0cihBD5i4xMW5jWenRe+iulmgGPpr2cp7X+M5NmXwIDAS/gDaXUBK11Uibt0hPp+cALGKeND81LfPbg9ddfZ86cOSQlJeHh4cG7777LO++8g4eHh61DE0LkA+XKlaNVq1b89ddftg5FiFzx8fFBa21yMq21ztU6ayGEeFBIMm3/ut32fEFmDbTWqUqpRRinfxcD2mPcT/oOaYn0AqA/sATw1Vqnmjleq5sxYwZKKdzd3fHz88PZ2Zmvv/46x/0/+ugjC0Yn7EVOqjhnRSnFvHnzzBiNcDRly5Zlx44dtg5DiFzp2rUrQUFBlC5d2qR+u3fvtlBEQgiRP0gBMitTSlUB0hcg3bcAmVJqO8aR6VigmNY606rbSqmWwK60l5/ePSJ+VyK9DOhnqXXS1i5AZjDcWq1gStVRrTVKKSms8oAwGAwmV7NNby8/J+KZZ55hx44dXLt2zdahCCGEECIXpADZg8kr7es/WSXSacIy6QPcMbW7P7ACeDG/FBwDGDBggK1DEA5g3LhxJrWPiopi7ty5xMXlZsc5kZ8kJCTw559/yr70QgghhLiDJNN2TClVACiZ9jLbT0601teUUrGAB8Y9qG/3CTAAYyXwE8CoTEZw12itD+YwrvsNNZfJyXXMZcGCTGe/C3GHkSNH5qhdXFwcU6ZMITAwkLi4OFxcXBgyZIiFoxP2KjU1lTfeeIOrV6/i75+b+pFCOK6UlBTmz5/P4MGDbR2KEELYJUmm7Vvh257fyEH79GS60F3Hq6R9LQRklVGcBg7mMK6zOWwnhMNISUkhICCAcePGcfnyZQD69OnDhAkTZEQyH1m0aNF922itiY2N5Z9//mHt2rWEh4dTvHhxhg8fboUIhbC91NRUFi5cyPjx4zl9+rQk00IIkQVJpu1bgdueJ+agfULa14K3H0xbl+1rnpCEyH+WL1/OqFGjOHnyJFprHnvsMSZNmmTSfqzCMfj6+ppcW6FkyZK5Kt4khL25ePEi69evJzIyktKlS9OlSxfKlLlzMtmPP/7ImDFjMn4flipVykbRCiGE/ZNk2r7F3/bcNQft3dK+3rRALLe7exr53coA+ywcQwY/Pz9at26dabXmtWvXUqlSJRo1anTPudGjR/Pzzz8TEhJihSiFPdq8eTMjRoxg//79aK1p3LgxEydOpFOnTrYOTVhIpUqV7ptMK6Xw8PCgUqVKdOjQgUGDBnH69Gm2b99OmzZtrBSpEOb1zTff8P7775OYeOuzeVdXV2bOnImfnx+nT5/mhRdeYM+ePWitKVSoEG+//TbvvvuuDaMWQgj7Jsm0fYu57fndU7czk76xck6mhOfa/SrfmTLqYw6BgYFA5lsfdevWDV9fX+bPn3/PuYiICA4ePGjh6IQ9OnjwIB988AGbNm1Ca021atUYP348ffv2tXVowsJOnz6dq36vvPIK+/btIzk5uzqQQtinnTt38uabb2bsZlCiRAlu3LhBQkIC/v7+VK1alX79+nHp0iVcXFx45ZVXGDVqFCVLlrzPlYUQ4sFmuH8TYSta63jg37SX2Rb9UkoV51YyLWuahchEeHg4L7zwAk2aNGHjxo2UKlWK6dOnExYWJom0uC/ZSlI4qhkzZqC1pmfPnpw/f56oqCji4uJYv349pUuXpmvXrly6dIn69evz119/MW3aNEmkhRAiBySZtn+haV9rKKWym0lQ57bnxywYjxAO6fXXX8fLy4tly5bh7u6esSZw2LBhODvLJB0hRP61e/duypQpw+LFiylbtixgnEXWqVMnpk2bRlxcHAUKFGDDhg3Url3bxtEKIYTjkHeQ9u8P4FGMo84+wJ4s2rW97flOSwclhKOZMWMGSinc3d3x8/PD2dmZr7/+Osf9P/roIwtGJ4QQlhMZGUnHjh0pUKDAPefat28PQJs2be4pRiaEECJ7kkzbvzXAh2nPB5JJMq2UMgD9015eB7ZYIzAhHE36lkfffPONSX2UUpJMCyEcVnx8fJbTtkuUKAEgibQQQuSCJNN2Tmu9Vym1A+Po9CCl1EKt9Z93NXsH8Ep7/rXWOsmaMSqljt51SH6uhN0ZMGCArUMQQgi7ZTDIyj8hhDCVJD0WppRqDdS47dDtHw3XUEr53t5eax2YyWXewDh1uyCwQSn1GcbR54JAX2BIWrsTwJdmCTyfuh5/naJuRa1ecVzY3oIFC2wdghBC2MylS5fYvn17rs7LlnBCCJE5JdVJLUspFQjkeEhMa51plqeU6gp8DxTJousJ4Cmt9T+mxmhuSqkKpFUUP3v2LBUqZFuIPM8MBgM1atSgdevW95wLDAy849y6E+tI1anUKVGHS6GXOB1+mpSUFIvGJ4SwH4sWLcpVv08//ZTw8HD5fSEcksFgyPWHyEop2RJOCJEvnDt3jooVK6a/rHi/7X5zQpJpCzNXMp12rcoYR6mfwrhVViLwD7ACmKG1jstTsGZii2RaKZWjbWsy2qT9KSulCD4XjHdZbwtGKISwF7lNKtLXzksyLRxRXqdwp6ammikSIYSwHUmmhUOwdjLt6+ubozfHf579k+P/Hr/3RDdoUq4J/j7+9K3fl0KuhcwfpLArKSkp/Pjjj6xdu5bg4GCioqIAKFWqFD4+Pjz77LM8//zzsmVWPlSlSpU8LfMIDw83YzRCCCGEsBZJpoVDsHYynROpOpVG3zbi8OXD2bYr7FqYFxu+iL+PPw+XedhK0QlrCg4Opm/fvhlJUWa/A5VSVKlShSVLltCsWTNrhyiEEEIIIcxMkmnhEKydTCclJeHi4nLfdimpKWw4uYGAkICMtdOcwzhhPhPNyzfH38ef5+o/h7uLu3mDFjaxa9cuOnbsSHx8PK6urnTu3JmmTZtSunRptNZcvnyZvXv3smHDBpKSknBzc2Pjxo2ZrscXQgghhBCOQ5Jp4RCsnUw3aNCAxYsX06hRoxz3Cb8Szkuvv8TOZTvhk+zbFnUrysdtPuadR97JW6DCpmJjY6lRowaRkZH07t2bb775Bk9Pz0zbRkZGMnz4cFauXEmZMmX4+++/8fDwsHLEQghhPcHBwfz0009cuXKFChUq0KtXL2rXrm3rsIQQwmwskUzLpoLC4R09epTmzZvz6aef5qg40L59+3i67dP8uexPCrgWYN3z63i61tMYVOb/HP5L+I8CzgXMHbawsoCAACIjI3nppZdYtmxZlok0QOnSpVm+fDkvvvgikZGRBAQEWDFSYSvRCdGERoWy9/xeQqNCiU6ItnVIQpjFnj176NOnD7Nnz870/NixY2nevDmfffYZc+bM4ZNPPqFhw4bMmTPHypEKIYRjkWRa5JlS6ujtD2CzNe8/evRotNaMHTuWli1bcuzYsUzbJSUl8dFHH9GqVSuOHTtG48aNCQ4O5ulaT7Pu+XWEvxHOJ20+oVzhcnf0c3dx58WGL1rjWxEWtHbtWgoWLMj06dNz3Gf69Om4ubmxdu1aC0YmbElrzZbwLfRa3ouHJj1EvVn1aD63OfVm1eOhSQ/Re0VvtoRvydFuAULYq3Xr1rFq1SqqVq16z7lNmzYxduxYtNaUK1eOnj170rRpU5KSkhg2bFiW/6cKIYSQZFrkA6NHj2b37t14eXkRHByMt7c3X3zxxR1vfkNCQvD29mbSpEkopfj000/Zs2cP9erVy2hTqWglxrYfy5k3z7DmuTU8UeMJFIq+9fpStEDRTO8dciGENgva8MNfPxCfHG/x71Xk3rFjx2jVqhVFi2b+d5mZYsWK0bp1a3kzmU/tv7ifBrMb0GFRB1YdW0WKvnNmS4pOYWXoSjos6kCD2Q3Yf3G/jSIVIm927dpFkSJF6NSp0z3nvvjiCwCaNm1KWFgYy5cvZ/fu3XzyySckJyfLzBwhhMiGrJkWZmerat6JiYmMGjWKqVOnorXmkUce4dtvv2XJkiVMnjyZ5ORkGjduTGBgIA0aNMjRNU9fPw1AlWJVMj0/ZN0Qvtv/HQAlCpZgwMMDGOIzhNolZZ2ZvXFzc6N37958//33JvV78cUXWbFiBQkJCRaKTNjCxpMb6b6sO7FJsTnu4+HiQdBzQXSqfm9CIoQ9q1atGlWrVmXz5jsnjt28eZNixYqRnJzM77//fkeyHR8fT/ny5alUqRIHDhywdshCCGF2smZaiGy4uroyefJktm/fTo0aNdi1axcNGzbk888/RynFmDFj2LNnT44TaTAm0Vkl0tEJ0fx4+MeM1//e/Jepu6dSZ2Yd2i9sz9IjS0lIlgTMXhQvXpzIyEiT+0VGRlKsWDHzByRsZv/F/SYn0gCxSbF0X9ZdRqiFw7ly5Qply5a953hISAhJSUm4u7vTrl27O84VKFAAHx8f2VtdCCGyIcm0yHdatGhBz5490VpnTPUeOnQon3zyCc7Ozma7z7Ijy7J8M7719FaeX/U8Fb6qwPsb3+efq/+Y7b4id7y8vNi5cyfXrl3LcZ+rV6+yc+dO6tata8HIhDVprekf1N/kRDpdbFIsA9YMkDXUwqEkJSURExNzz/H9+40fDDVq1CjTLSY9PT25efOmxeMTQghHJcm0yFfCwsJo2bIlkyZNwsnJiS5dugAwY8YMHn/8cc6dy/NsjgwDGg1gea/lPFb1sSzbXIm7whe7vqDmNzXpuKgjK46uIDEl0WwxiJzr2rUr8fHxvP766znuM3z4cBISEnjmmWcsGJmwpq2nt3I06miernHk8hG2ndlmpoiEsLzSpUsTGhp6z/E//vgDpRRNmzbNtF9MTAwPPfSQpcMTQgiHJcm0yDe+/PJLvL292bdvH3Xq1OHPP//k119/ZcOGDVSoUIGNGzfSoEEDAgMDzXI/VydXetfrzab+mzgx7ATvPfIeJd1LZtl+c/hm+qzsQ8WvKvLhpg+5evOqWeIQOTN06FBKly7Njz/+SJ8+fbh8+XKWbdP3ol6yZAmenp74+/tbMVJhSbOCZ5nnOvvMcx0hrKFFixacOnWKFStWZBy7cOECv/zyCwAdO3bMtN/Ro0cznR4uhBDCSAqQCbOzdgGyU6dO4evry86dO1FK8dZbbzF+/Hjc3Nwy2sTExPDmm2+yYMEClFI8+eSTzJkzx+xvEhKSEwgKCyIgJICtp7dm2c7DxYML71ygiFsRs95fZG/nzp107NiRxMREXFxc6Ny5M82aNaN06dKAMYnes2cPGzduJCkpCRcXFzZt2kTr1q1tHLkwh+iEaB6a9NA9Vbtzw0k5cfWDq/JvWDiErVu30qFDB1xcXOjduzeenp6sXLkyoxjPqVOncHJyuqPPyZMnqVmzJi+99BILFy60UeRCCGE+lihAJsm0MDtrJ9OFChUiLi6O6tWrExgYSKtWrbJs+8svvzB48GAuXbpE8eLFmT59Ov369bNIXMevHGdOyBwCDwXeMwo92Hswc7rOsch9Rfb27NlD3759OXPmDABKqTvOp/9OrFy5MkuWLKFFixZWj1FYRmhUKPVm1bt/w5xe79VQvEp5me16QljS+++/z5QpUzJ+52mtcXZ2Zs2aNTz55JP3tP/444+ZMGECgYGB9O/f39rhCiGE2UkyLeySUuruBYjOQC2wTjLt5OTEa6+9xsSJE3F3d79v+2vXrvHaa6+xdOlSDAYDycnJFo0vPjmeVaGrCAgJYEfEDgCCBwfjU84n0/bT90ynctHKPFXrKZwN5iuYJm5JSkpiyZIlrFmzhpCQEKKiogAoWbIkPj4+PPvss/Tr1y/TgjzCce09v5fmc5ub7Xp7Xt5Ds/LNzHY9ISzt119/ZenSpURGRlKpUiX8/f1p0qRJpm0HDRrE1atXmTVrlkz1FkLkC5JMC7tk62R6y5YttG/f3uR+q1at4pVXXsl27ay5hUaF8vOJn3m/1fuZnr8ef51yX5bjZvJNyhcuz6DGg3jZ+2UqFq2YaXshRM7JyLQQQgjx4JJkWjgEa0/zzouoqChKlSpl6zAyzNg7g+G/Db/jmEEZeLLmk/j7+PNEjSdwMjhl0VsIkR1zrpl2Njjz7/v/ypppIYQQwkFYIpmWat7igWZPibTWmoCQgHuOp+pUfj7xM12XdKXq11X5dNunnI8+b4MIhXBsRdyK0N2ru1mu1b1Od0mkhRBCiAecjEwLs7PHkenohGjORZ/jRuINCrkWokKRCnb3RjglNYVFhxYREBLAnvN7sm1rUAa61uqKv48/nat3ltHqHPDz88t1X6UU8+bNM2M0wla2hG+hw6IOeb/OgC20q9Iu7wEJIYQQwipkmrdwCPaSTGut2Xp6KzP3zWRN2Jo7pnY6KSe6e3Xn1Sav0q5Ku3sqOtvaoUuHCAgJ4Pu/vicmMSbbtpWLVmaw92D8GvtRtrAUicmKwWBAKYUpv/PS2yulSEnJ+9RgYXtaaxrMbsDRqLtLPeRcfc/6/DX0L7v7vSGEEEKIrEkyLRyCPSTT+y/up39Q/xy9Ya5Xqh6Lui/Cu6y3FSIzzY3EGyw9spSAkACCLwRn23aoz1BmPz3bSpE5ngkTJpjUPioqirlz5xIXFyfJdD6z/+J+2ixoQ2xSrMl9PVw82D5wu13+vhBCCCFE1vJtMq2UKgVUA8oAHkAScB2IAP7R2gzVYoTV2DqZ3nhyI92XdTfpjbKHiwdBzwXRqXonC0aWN/sv7icgOIAfj/zIjcQb95w/4H+ARmUaWT+wfCYuLo4pU6YwdepUoqOjcXFxYciQIXzzzTe2Dk2YUX79PSGEEEKIzOWbZFop5QE8CzwBtAXKZ9M8ATgAbACCtNZ/WT5CkRe2TKYfhBGnmIQYfjz8IwEhARy4dACAZuWbseflzNdZX7t5jf0X99O+ansMSmoOZiUlJYWAgADGjRuXsV1a7969mTBhAtWrV7dxdMISTJnBUt+zPgu7LbT73w9CCCGEyJzDJ9NKqcbAcKA34J5+OIfd0wM9CswEFmut48wboTAHWyXTD9paSK01wReCCQgJoEPVDrzQ4IVM203bPY231r9FjYdqMMR7CL6NfCnlYT9VzO3B8uXLGTVqFCdPnkRrzWOPPcakSZPw9pbEKb/TWrPtzDZm7ptJ0LGgO2orOBuc6V6nO682fZW2lds6xO8FITLj5+dH69at81SIUQghHJ3DJtNpSfQ4jCPRcCuBvgTsBUKAy8BV4BpQEHgIKA7UApoCDQGXtH4a+BeYDHyjtU6w+DchcsxWybRU6b2X1pq6s+oSdiUs45irkys9vHrg7+P/wCcImzdvZsSIEezfvx+tNY0bN2bixIl06iTTeB9E0QnRnI8+T0xiDIVdC1O+SHm7q/ovRG4YDAZ8fX2ZP3++rUMRQgibsUQy7ZzXC9yPUmoB8BK39rTeD/wArNJaR5hwHVegDdAP6A6UBCYBryql+mut/zBr4MLhzAqeZZ7r7JuVb5LpHRE77kikARJTEll6ZClLjyylVola+Pv4M+DhAZRwL2GjKK3v4MGDfPDBB2zatAmtNdWqVWP8+PH07dvX1qEJGyriVoQipSR5FkIIIUTOWGMB5QAgGfgOqKO1bqK1/sqURBpAa52otd6ktR4IlAb6A8eBKkDehyNFrimljt7+ADZbO4bohGiCjgWZ5Vqrj60mOiHaLNeytfjkeOqVqpfl+RP/nuCdDe9Qbmo5+q3ux/Yz203aOsrRhIeH88ILL9CkSRM2btxIqVKlmD59OmFhYZJICyGEEEIIk1gjmZ4F1NRa+2utT5jjglrrBK3190A9oC/wtzmuKxzXuehzd6x1zIsUncL56PNmuZatda7emcOvHOaPgX/wUsOXcHNyy7RdYkoiPx7+kbaBbak3qx7Tdk/j6s2rVo7Wsl5//XW8vLxYtmwZ7u7ujBkzhpMnTzJs2DCcnS0+SUcIIYQQQuQzdrE1lshfbLFmeu/5vTSf29xs19vz8h6alW9mtuvZi6s3r7Lo0CICQgLumf59twLOBTj5+knKFS5npegsy2AwoJTC3d2dQYMG4enpaVL/jz76yEKRCSGEZcmaaSGEcOACZOLBYotkOjQqlHqzsp7ObPL1Xg3Fq5SX2a5nb7TW7IjYQUBIACtDV5KYknhPm5YVWrJr0C4bRGcZBsOtiTimFF3TWqOUIiVFtrsXQjgmg8FAoUKFKFmypMl9lVKcPHnSAlEJIYR1OWQBMiGsoUKRCjgpJ7NM9XY2OFO+SHZbnzs+pRRtKrehTeU2fN3l64zR6hP/3lqJ4e/jn2X/qNgoSrqXdKhK4AMGDLB1CEIIYTM3btzgxo0bJvdzpN/zQghhbZJMi3yhiFsRunt1Z2Xoyjxfq3ud7g/Udjgl3Uvydsu3eavFW2w7s42AkAC2hG+hT70+mbbXWtN6QWsKOBfA38efFxu+6BB/XgsWLLB1CEIIYTOtW7dm0KBBtg5DCCHyFZtN81ZKVcpFNw3EA/9pre+dlyrsguwz7fjik+Mp4Fwg03N3/zm7u7jzfP3n8ffxp0m5JjKKIYQQdkbWTAshRP6b5h2el85KqXPAbiBQa/2beUISjqxdlXbUK1WPo1FHc32N+p71aVu5rRmjckxZJdIAASEBd7yOS4pj3oF5zDswj8ZlGuPv488LDV6gsFthS4cphBBCCCGEzVhja6ysqDw+KgK9gJ+VUr8rpYpb+xsQ9kUpxaLui/Bw8chVfw8XDxZ2Wygjq9lISkniUOShLM8fuHSAob8MpdzUcviv82f/xf1WjC57fn5+WY7KrF27loMHD2Z6bvTo0fj4+FgwMiGEEEII4YhsmUwPTHvsSXsdD/wEfAwMTXt8nHYsHuMU7z3AIOAtYB7wL8bEuhOwxnqhC3vlXdaboOeCTE6oPVw8CHouCO+y3haKLH9wcXLh6KtHWf/ienp49cBJOWXa7kbiDebsn4PPHB+afteUufvnciPR9MI35hQYGMgff/yR6blu3boxffr0TM9FRERkmWgLIYQQQogHl82Saa31QqAl0AxjwlxFa91daz1Baz0n7TFBa90dqAKsS2vbSmv9tdZ6MFAJWIQxoW6tlHrOJt+MsCudqndi+8Dt1CuVs62y6nvWZ/vA7XSq3snCkeUPBmWgc/XOrOqzirNvnWV8+/FULlo5y/bBF4IZvG4w5b4sx9e7v7ZipEIIIYQQQliOzZJppVQ3YAjwJ9BDa305q7Zp57pjXCM9UCnVJ+14POAHpM8l7WvJmIXj8C7rzeFXDrNlwBZ61e11zwiqs8GZ3nV7s2XAFv4a+peMSOdS2cJlGdlmJCdfP8mvL/zKs7WfxaAy/7USkxhDCfcSVo5QCCFEeHg4X3zxha3DEEKIfMeWBchexTh1+2udg5LiWmutlJoGLMOYhC9PO56qlPoOmA00sVy4wtEopWhXpR3tqrQjOiGa89HniUmMobBrYcoXKe8Q2zk5CieDE0/UfIInaj7B+ejzzDswj+/2f8e56FtFEh8q+BC96vayYZRCCPFgqlw569lDQgghcs+Wa6Ybpn39x4Q+6W0b3HX8r7SvMuxlA0qpo7c/gM22juluRdyK4FXKi2blm+FVyksSaQsqX6Q8n7T9hNNvnGbd8+t4utbTGJSBAQ8PyLJK+OZTm2k1vxWLDi3iZtJNK0cshBAiMz169KB69eq2DkMIIeyWLUem07OZUib0SW9795476e++k/IUkRDCbJwMTjxd62mervU0Ef9F4GJwybLttyHfsuvsLnad3cWbv79J/4f74+/jj1cpLytGLIQQ4nYXL17k9OnTtg5DCCHsli1HpiPSvj5vQp9+d/VN55n2NSpPEYlc0VrXu/0BPGbrmIR9qVS0EmULl8303KUbl1gTtibj9bX4a3y952vqzqpLmwVt+OGvH4hPjrdSpEKIzDg5OeX64exsy8/thRBCCMux5f9wa4F3gf5KqRCt9YzsGiulhgMvYVxnvfau083Tvp42d5BCCMv68fCPJKcmZ3puR8QOdkTs4I3f32DAwwMY4jOE2iVr5/pef/zxB35+fiady2o7LSEeJDkobSLs2K5du3LVLyYmxsyRCCFE/qJs9R+kUuohIJRbU7f3Ad8DIdwaYS4F+AAvAk0xboF1Gairtb5627WOAnWAkVrriVb5BkSWlFIVgLMAZ8+epUKFCjaOSNizpJQk1p1YR0BIABtObrhv+3ZV2uHv40/3Ot1xc3bL8X0MBgNKKZOSgvT2SilSUlJy3E+I/Gbbtm156t+2bVszRSJyI/33n6nk958QIj85d+4cFStWTH9ZUWt9Lrv2OWGzZBpAKdUA+B0oi3HEOdvmwCWgi9b6r4yDSlUDPk57+ZnW+m9LxCpyTpJpkVunrp3iu5DvmH9wPpdjs9wtD4CS7iUZ2GggIx8dSdECRe97bV9f31y9mUy3YMGCXPcVQghbSk+mK1WqZFK/ixcvkpSUJMm0ECJfyHfJNIBSqigwBhgAFMui2X/AImCM1vqadSITuSXJtMirxJREfgr7iYCQADaHZ10cvqR7Sc69dc6kEWohhHjQVK1alYiICM6dO0fZspnXr8hMy5Yt2bt3ryTTQoh8wRLJtC0LkAGgtf5Pa/0WUAZoDQwFPkx7DAUeBcpord+QRFqIB4Orkyu96/VmU/9NnBh2gvceeY+S7iXvaTew0cAcJ9JJSbkv9r93795c9xVCCFvz8fEB4MCBAzaORAgh8he7KbGptU4EdqU9hBACgJolajK502TGtR9HUFgQASEBbD29FYAhPkOy7Ddh+wS8SnnRtVZXXJxc8Pb2ZvHixTRq1CjH905MTOTjjz9m6tSpeUrGhXB0n376aZ76f/LJJ2aKROSGj48Pq1evJiQkhCeffNLW4QghRL5hs2RaKVVfa30kl30/0FpPMndMQgj75ebsRt/6felbvy/Hrxxnc/hmajxUI9O2F2IuMHrraFJ0CmUKlWFQ40EcPXqU5s2bM3LkSEaOHImTk1O299u3bx++vr6EhYXh6upqiW9JCIcxZsyYPNUckGTatlq3bs3DDz/MjRs3TOr38ssv06VLFwtFJYQQjs+W1bzPA6201qdN7DcS+FRrnf07YWEzsmZa2Nr47eP5eMvHdx7cCmqHQmmFt483ixYuwsvL656+SUlJjB49milTppCcnIy3tzcLFy6kXr161gleCDvUrl27PCXTW7ZsMWM0QgghhOnyVQEypVQqcApjQh2Zwz6jgdGAlmTafkkyLWwpJTWFatOrEfFfxL0nLwBBwBVwdnHm/VHvM37U+IwkISQkBF9fX0JDQ3F2dubjjz/mww8/vO8othBCCCGEsG/5rQBZFFAV2KCUKna/xkqpT4H0eWJ52/BSCJFvaTTj2o/jkYqP3HuyHOAPtITkpGQ+G/0ZJb1KMvOXmXw08iNatmzJ0aNHadSoEcHBwYwaNUoSaSGEEEIIkSlbjkw3ArYARYA9QEetdVwWbT8DPsC41/Rm4Bmt9U0rhSpMJCPTwl4cuXyEgOAAFv+1mP8S/rvzZATwE3D11iEnZyfefO9NJo6diLOz3dRnFEIIIYQQeWSJkWmbvVvUWh9USj0D/A40B4KUUk9rre8omauUmgS8izGR3gB001rHWz1gIYTDqe9Zn2+e/IZJnSax7MgyAkIC2HN+j/FkBcAL+COtsYIU7xRc2rtIIi1ELgwcOJDFixeTnJxs61DEXfz8/HLdVynFvHnzzBiNEELkHzYbmc4IQKmnMK5idAJWA310WlBKqS+BNzEm0r8D3bXWCTYKVeSQjEwLe3bo0iEmrpnI8gnLST2favztUg04aTz/aLtH+XHRj/JzK4SJBg4cyKJFi0hJSbF1KOIuBoMBpRSmvOdLb6+Ukr9TIUS+kK9GptNprX9RSvkCi4EewBxgsFJqOvAaxre6vwA90/aiFkKIXNv0wyZ++vgndLymbNWyFOtbjGOux+AUFPilAH9s/YMGDRrw1Vdf4evrm9HvYsxF/or8i07VO2FQtiw3IYQQphk3bpxJ7aOiopg7dy5xcZmuvhNCCJHG5sk0gNb6x7QiZDMAP6VUM6A+xkR6HdDr7unfwn4opY7edcgufq6EuN2pU6fw9fVl586dKKV45513GD9+PG5ubuy/uJ+A4AAee+Mx1s9cz4IFCxg0aBCrVq1izpw5lC1bljkhcxizbQxVi1VlsPdg/Br7UbpQaVt/W0IIcV8jR47MUbu4uDimTJlCYGAgcXFxuLi4MGTIEAtHJ4QQjsvm07xvp5QaBXwKaIyJ9BrgOUmk7VsWyXQtkGnewn4UKlSIuLg4qlevTmBgIK1atcqy7S+//MLgwYO5dOkSxYsX56tpXzHyykjORd+aDeRscKZ7ne74+/jTvmp7Ga0WDzyZ5u24UlJSCAgIYNy4cVy+fBmA3r17M2HCBKpXr27j6IQQwjzy29ZY99BajwemYUykVwK9JZG2f1rrerc/gMdsHZMQd7t58ybDhg3j0KFD2SbSAE899RRHjx6lb9++XLt2jYEDB96RSAMkpyazInQFHRd3pPaM2nyx8wuiYqMs+S0IYddKlChBpUqVbB2GMNHy5cvx8vJi+PDhREZG0qFDB/bt28fSpUslkRZCiPuw+Mi0UsoSH1FrrbVMJbZTUoBM2KMtW7bQvn17k/utWrWKQUMGUXlCZf6K/Cvbtq5OrvTw6oG/jz9tK7dFKZXbcIXIN86cOUPlypVtHYa4y+bNmxkxYgT79+9Ha03jxo2ZOHEinTp1snVoQghhEY46Mq0s9BBCiBy7XyIdnRBNaFQoe8/vJTQqlOiEaAB69uzJ32F/c9D/IH8O+hPfRr4UdC6Y6TUSUxJZemQp7Re2p87MOkz9cyr/xv1r9u9FCGvr3Lkz58+fN7nf7NmzadCggQUiErl18OBBHn/8cTp37kxISAhVq1blxx9/JCQkRBJpIYQwkTVGpkdb4rpa67GWuK7IOxmZFo5Ca83W01uZuW8ma8LWkKJvTaRxUk509+rOq01epV2VdneMMl+Pv87iQ4sJCAngaNTdJQPuVNC5IOfePsdDBR+y2PchhKUZDAaKFSvGtGnT6N+//33bR0RE4Ofnx5YtWwBkHbUdCA8PZ+TIkSxfvpzU1FQ8PT0ZNWoUQ4cOxdlZJvsJIfI/S4xM21UBMpE/SDItHMH+i/vpH9T/vskwQL1S9VjUfRHeZb3vOK61ZtfZXQSEBLD86HISUhLu6ftEjSf4td+vZotbCFsYOHAgCxcuRCnFM888Q0BAAJ6enpm2nTNnDu+99x4xMTFUrFiRuXPnyoinjb3++uvMmTOHpKQkPDw8ePfdd3nnnXfw8PCwdWhCCGE1DptMK6Ue1lofsviNhF2QZFrYu40nN9J9WXdik2Jz3MfDxYOg54LoVD3zpODqzassOrSIgJAAwq6EZRxf89wanq3zbKZ9zkefp1zhcrK2WjiEdevWMXjwYC5fvkzJkiWZOXMmvXv3zjh/9uxZBg0axObNm9Fa4+fnx1dffUXhwoVtGLUA48wCpRTu7u4MGjQoyw9CsvLRRx9ZKDIhhLAeR06mU4EI4BeM+0b/T2udaPEbC5uQZFrYs/0X99NmQRuTEul0Hi4ebB+4/Z4R6ttprdkRsYOAkAB2n9vN8WHHcTbcO4UyKSWJytMqU8K9BP4+/rzY8EWKFShmckxCWNPVq1d55ZVXWLFiBUop+vTpw8yZM1m9ejXvvvsu0dHRlC9fnu+++44uXbrYOlyRxmC4VSLHlA/vtNYopWSavhAiX3D0ZBqM+0cDxAGbMCbWv2itIy0ehLAaSaaFvdJa02B2gxxN7c5Kfc/6/DX0rxy9IU1KScLFySXTc0HHguixvEfG64LOBelbvy/+Pv40K99MRquFXVu6dCnDhg3j2rVruLm5kZCQgNYaX19fvvrqK4oWLWrrEMVtBg4cmKf+CxYsMFMkQghhO46cTJcDnga6YtyDuEDaKZ32CMGYWK+T6eCOT5JpYa+2hG+hw6IOeb/OgC20q9IuT9fo8n0X1p9cn+m5h0s/jL+PP/0a9qOIW5E83UcIS5kyZQrvv/8+YBztfPPNN/nyyy9tHJUQQgiROUfdGgut9QWt9RytdVegBPAs8B1wKS2GpsBYYL9S6oxSapZS6gmllKs14hNCPBhmBc8yz3X25e06cUlxnLp2KsvzhyIP8eqvr1L2y7K8vPZlgi8E5+l+QpjTlStX6NmzJx988AEAderUQWvNtGnTGDJkCDdu3LBxhEIIIYR1WCWZvp3W+qbWep3W2l9rXR5jIv0pcADj/tEVAX/gZ+BfpVSQUspPKVXa2rEKIfKP6IRogo4FmeVaq4+tztiHOjfcXdwJGxbGxpc20qtur0zXVIMx6Z53YB5Nv2uKzxwfAoIDiEmIyfV9hcir1atXU69ePYKCgihVqhSrV68mNDSUuXPnUrhwYebNm0eDBg0ytsQSQggh8jOrJ9N301qHaK3HaK2bABWAocCvQDzgwa1R7PNKqT1KqVFKqYdtF7EQwhGdiz53xz7SeZGiUzgffT5P1zAoAx2rdWRF7xWcfessn3X4jKrFqmbZfv/F/Qz9ZSjlppZj9r7Zebq3EKa6fv06/fr1o3fv3kRFRdGzZ0+OHDlCt27dAPDz8+Pw4cO0b9+eM2fO0KlTJ4YNG0ZcXJxtAxf3SElJYfHixfTu3ZuqVatSqFAhChUqRNWqVenVqxeLFy8mOTnZ1mEKIYRDsNt9ppVSBYCOGNdZPw2UTTuVHvB5jOusv9VaH7Z+hCIrsmZa2KO95/fSfG5zs11vz8t7aFa+mdmuB5CqU9l4ciMBIQGsPb42y+R/3fPreLrW02a9txDZKV++PJcuXaJ48eLMmDGDvn37Ztl25syZjBgxgri4OKpVq8aCBQto3bq1FaMVWQkODqZv376Eh4cDxqKMd1NKUaVKFZYsWUKzZub9HSeEELbksAXIzEEp5cOtImbp+9JoYKzW+lObBSbuIcm0sEehUaHUm1XPfNd7NRSvUl5mu97dLsRcYP6B+Xy3/zsi/ovIOF6xSEXC3wjHyeB0T5/0bWyEMDeDwcDTTz/NnDlzKFOmzH3bnzx5El9fX3bu3ImTkxNJSUkWjzE4OJiffvqJK1euUKFCBXr16kXt2rUtfl9HsWvXLjp27Eh8fDyurq507tyZpk2bUrp0abTWXL58mb1797JhwwaSkpJwc3Nj48aN8kGIECLfeKCT6dulVQfvCjwFbNdaT7FxSOI2kkwLexSdEM1Dkx4yy1RvZ4Mz/77/r1UqbaekprDh5AYCQgJYd2Ido9uO5pO2n2TadmXoSr7880uGeA/hufrP4e7ibvH4xIMhMDAQX19fk/porfnyyy/55JNP8jzde8+ePXz55Ze0b9+eV1555Z7zY8eO5dNP7/xc3dnZmW+++YYhQ4bk6d75QWxsLDVq1CAyMpLevXvzzTff4OnpmWnbyMhIhg8fzsqVKylTpgx///03Hh4eVo5YCCHMT5Jp4RAkmRb2qveK3qwMXZn369TtzfLey80QkWnOR5+ngHMBSriXyPR8p8Wd2HRqEwBF3YryUsOX8G/iT33P+tYMU4g7hIWFUadOnTxdY9SoUXz++ef88ssvdOnS5Y5zmzZtonPnzoBxOnrLli2JiIhg7969ODs7c+jQIby8LDeLxBFMnTqVd999l5deeomFCxfmqE///v354Ycf+OKLL3j77bctHKEQQliew26NJYQQ9uDVJq+a5zpNzXMdU5UvUj7LRPqfq/9kJNIA/yX8x4x9M2gwuwGt5rdi0aFF3Ey6aa1QhciQ10QajFOUixQpQqdOne4598UXXwDQtGlTwsLCWL58Obt37+aTTz4hOTmZgICAPN/f0a1du5aCBQsyffr0HPeZPn06bm5urF271oKRCSGEY7PZyLRSqpIlrqu1jrh/K2FJMjIt7JXWmgazG3A06miur1Hfsz5/Df3L7tYmj906ljHbxmTbpniB4vR/uD/+Pv4WXe8thLlVq1aNqlWrsnnz5juO37x5k2LFipGcnMzvv/9+R7IdHx9P+fLlqVSpEgcOHLB2yHaldOnSPPzww2zYsMGkfp07d+bQoUNERkZaKDIhhLAeS4xMZ765qXWEW+CaGtt+T0IIO6aUYlH3RbRZ0IbYpFiT+3u4eLCw20K7S6QBRrYZycNlHmZOyBx+/+d3NPd+UHot/hpf7/mar/d8zaOVHsXfx5+edXtSwLmADSIW+cGqVatYsWIFx48fJzo6Osvq0CdPnszTfa5cucIjjzxyz/GQkBCSkpLw8PCgXbt2d5wrUKAAPj4+7N27N0/3zg+uX7+e5Rrp7Hh6enL9+nXzBySEEPmELRNP+3s3KnJFKXX3MJ98oCHslndZb4KeC6L7su4mJdQeLh4EPReEd1nv+ze2AWeDM93qdKNbnW6cvn6aufvnMu/APC7duJRp+x0RO9gRsYM3fn+DAQ8PYGz7sRRyLWTlqIWj0lrTp08fVq9enWkCDcYk2lwV5pOSkoiJibnn+P79+wFo1KgRLi4u95z39PTk5k1Z3lC8ePFcjS5HRkZSrFgx8wckhBD5hC3XTA9Me+xLe50E/AKMBoamPUYDPwOJGEed993WL7OHn/XCF0I4qk7VO7F94HbqlcrZVln1PeuzfeB2OlW/d72mPapSrArjO4wn4s0IVvVZRefqnbNs++/Nf1l1bBUFnQtaMULh6L777jtWrVpFw4YNWb9+PT169EApxfHjx/n555957rnnAGPhsFOnTuX5fqVLlyY0NPSe43/88QdKKZo2bZppv5iYGB566KE839/ReXl5sXPnTq5du5bjPlevXmXnzp3UrVvXgpEJIYRjs9kIotZ6oVJqHtAE2AAM0lqfz6ytUqo88B3wOPCo1vpl60Uq7kdrfUdGcvuaaSHslXdZbw6/cphtZ7Yxc99Mgo4F3bFtlrPBme51uvNq01dpW7mtXU7tvh8XJxd6ePWgh1cPTl07xXch3zH/4Hwux16+o91g78GZ7lstRFYWL16Mm5sbv/32G2XKlOHHH38EoGbNmtSsWZMnn3yS9u3b8+qrr9KuXTsqV66cp/u1aNGCFStWsGLFCnr37g3AhQsX+OWXXwDo2LFjpv2OHj1K2bJl83Tv/KBr165s27aN119/ncWLF+eoz/Dhw0lISOCZZ56xcHRCCOG4bFmArBewHONo8yNaZ7/5q1LKCfgT8AGe11pbf18akSNSgEw4ouiEaM5HnycmMYbCroUpX6S8VfaRtrbElER+CvuJgJAANodvxtngTMSbEZQtnHnC8cHGD2hSrgnP1nkWVydXK0cr7FXx4sVp3Lgx//vf/wDw8/Nj4cKFJCcn3/HBU926dalcuTK//fZbnu63detWOnTogIuLC71798bT05OVK1dmFJM5deoUTk53fiB08uRJatasadJ2UPlVXFwc1atX5/Lly/Ts2ZMZM2Zku8/0sGHDWLVqFaVLl+bkyZO4u8ue9UIIx5ffCpD5Y5y6PfV+iTSA1jpFKfUlsAQYgjERF0IIsyjiVoQipfJf8nw3VydXetfrTe96vfn737/589yfWSbSJ/49weRdkwHw9PDEr5Efg30GU614NWuGLOzQzZs37xjxdXNzAyA6OpqiRYtmHG/UqBEbN27M8/3atWvHu+++y5QpU1iyZAlgXLft7OzM7Nmz70mkAQIDAwF47LHH8nx/R+fu7s7KlSvp2LEjq1atYu3atXTu3JlmzZpRunRpwJhE79mzh40bN5KUlISrqysrVqyQRFoIIbJhy2S6YdrXEyb0SW/bwMyxCCHEA6dmiZrULFEzy/NzQuZkPL8ce5mJOycycedEOlfvjL+PP11rdcXF6d6iTyL/K126NFFRURmv00c5//nnH3x8fDKOX716lfj4eLPcc/LkybRr146lS5cSGRlJpUqV8Pf3p0mTJpm2v3DhAs8++2yme1M/iFq1asXWrVvp27cvZ86c4eeff86YJp8ufbZi5cqVWbJkCS1atLBFqEII4TBsOc07DnADntRar89hn8eB34B4rbV8VGqnZJq3EI4vPjmeClMr8O/Nf7NsU6ZQGQY1HsRg78FULpa3NbHCsTz22GOcOXOGf/75B4Cff/6ZZ555hkGDBvHdd98BcOzYMRo3bkydOnU4ePCgDaMVt0tKSmLJkiWsWbOGkJCQjA9FSpYsiY+PD88++yz9+vXLtDq6EEI4MktM87ZlMn0MqAUs1Vr3y2GfH4DngRNa6zqWjE/kniTTQji+xJREVhxdQUBIADsidmTbVqHoUqML/j7+PFXrKZwNsjtefjdp0iQ++ugjDh8+TN26dUlMTKRmzZqcO3cOb29vKlWqxObNm4mJieGLL77g7bfftnXIQgghHnD5LZmeCLyPcd30h1rryfdp/y4wOa39ZK31h5aPUuSGJNNC2IErV8DL685jx45ByZImXyo0KpQ5IXNYeGgh1+OvZ9u2fOHyDGo8iJe9X6Zi0YrZthWOKyIigsWLF9OlS5eMad27d++mW7duXL58q1r8s88+y8qVKzNd02xuFy5c4LfffuPKlStUqFCBJ554QrbFEkIIkSG/JdPFgKNAmbRDfwELMVb3vowxaS4NNAVeAhoBCrgI1NNaX7dqwCLHJJkWwg5ERcHd1XovX4ZSpXJ9yZtJN1kRahyt3nV2V7ZtJz42kQ9af5DrewnHdPPmTbZv387Vq1fx8vKiUaNGZrluaGgogYGBNG7cmOeff/6e8/Pnz+e1114jMTEx41jRokVZtGgRTz/9tFliEEII4djyVTINoJTyAtYDFTAmz9k2B84BXbTWoZaOTeSeJNPCEUUnRHMu+hw3Em9QyLUQFYpUcOytsSyQTN/ucORh5oTMYfFfi/kv4b87zrkYXDj39jk8PTLfekcIU40fP57Ro0ezbNkyevXqdce54OBgWrZsSUpKCu7u7tStW5fz589z8eJF3N3dOXbs2O1vnh5Ifn5+ue6rlGLevHlmjEYIIWwj3yXTAEqpwsAngB9QPItm14AFwKda62hrxSZyR5Jp4Si01mw9vZWZ+2ayJmwNKbft0ueknOju1Z1Xm7xKuyrt7tg71yFYOJlOF5sYy/KjywkICWDP+T0A9KnXh2W9lmXa/tS1Uxy/cpzO1TvjZLD81F+RPzzxxBPs2LGDK1euUKBAgTvO9erVi9WrV1OrVi3+97//Ua5cOVJTUxk6dChz585lxIgRfPbZZzaK3D4YDAaUUpjyni+9vVKKlJT77mAqhBB2L18m0+mUUi6AD8Ztr9IXOV0DDgMhWuvErPoK+yLJtHAE+y/up39Qf45GHb1v23ql6rGo+yK8y3pbITIzsVIyfbtDlw4REBJA3/p9aVO5TaZt3vr9LabtmUblopUZ7D0Yv8Z+We5zLezH9u3b89S/TZvMfx5yqmbNmpQpU4YdO+4shpeUlETRokVJSEhgxYoV9OjRI+Pcf//9R4UKFfDy8mLv3r15ur+jmzBhgknto6KimDt3LnFxcZJMCyHyjXydTIv8Q5JpYe82ntxI92XdiU2KzThW2gM6V4eibvBfAmw4CZG3TuPh4kHQc0F0qu4ge9baIJm+n5tJNyk/tTzX4q9lHHM2OPNM7Wfw9/GnY7WOGJTBZvGJrKWPbOaGUork5OQ83b9YsWI89dRT/PDDD3cc37t3Ly1atMDNzY2rV69SsGDBO8536NCBgwcPcvXq1Tzd/0ERFxfHlClTmDp1KtHR0bi4uDBkyBC++eYbW4cmhBB5ZolkWvYvEUI8UPZf3H9HIt24DIxoDd3qgOtts44TUyDoGEzaCQcuQWxSLN2XdWf7wO2ONUJtR1aGrrwjkQZITk1m9bHVrD62mmrFqzHYezADGw2kdKHSNopSZKZNmzb3JNOJiYn8+eefgLHYV5UqVQA4c+YM169fRylFixYtcHV1zfP9b968yc2bN+85vn//fgAaNmx4TyINUKZMGW7cuJHn++d3KSkpBAQEMG7cuIxq7H369GHChAlUr17dxtEJIYT9sushAKVUcaVUKeVwixWFEPZIa03/oP4ZiXS3OrBrEPSpd2ciDcbXz9U3nn+2tvFYbFIsA9YMMGndobilWIFiNC7TOMvzp66d4sPNH1Lxq4r0WdGHzac2k6pTrRihyMrWrVvZsmVLxuO3334DoHr16gQFBXHt2jUOHDjAgQMHuHr1KmvWrKFGjRoAGW3zomTJkvzzzz/3HN+1axdKKZo0aZJpv/j4eIoVK5bn++dny5cvx8vLi+HDhxMZGUmHDh3Yt28fS5culURaCCHuw+rJtFLKWSlVXynlo5S6Z76hUqqAUupTpdQ54ApwCYhRSq1UStWzdrxCiPxj6+mtGWukG5eBJT2hwH3m5xRwhqW9jO0Bjlw+wrYz2ywcaf7UtXZXQoaEsPflvQxqPAh3F/dM2yWlJrEidAUdF3ek9ozafLHzC6Jio6wcrcjO+PHjOXToEFu2bOHZZ5+95/wzzzzDpk2bOHToEOPGjcvz/Xx8fDh69Ogda7ejo6NZt24dAO3bt8+03/HjxylTpkym5x50mzdvpmnTpjz//PP8888/NGrUiPXr17Nx40a8vR139o2TkxODBg2ydRhCiAeE1ZJpZfQpxgT5ELAXuKSU+kMp1TStjSvGrbJGAmUxboelAHegO7BXKfWYtWIWQuQvs4JnZTz/oNX9E+l0BZzh/Va3XWffrKwbi2wppWhavilzn5nLhbcvMPPJmTQs3TDL9v9c/Yf3N71P9enViUuKs2KkIjvLly+nffv22dbEqFixIh06dGD58uV5vp+fnx9aa5555hk+/vhjpk+fTrt27fjvv/8oUaJEpntJX7x4kbCwMOrWrZvn++cnBw8e5PHHH6dz586EhIRQtWpVfvzxR0JCQujUyUFqQmRDay2zh4QQVmPNkekFGJPkwtxKkhXwCPC7UqoGMBF4NO34NWAPEALcTDtWEPhBKVXUinELIfKB6IRogo4FAcZiY929TOvfwws8PYzPVx9bTXSC7NKXV0ULFOXVpq9y0P8gfw76E99GvhR0vnfdK8DTtZ7OciRbWN/Zs2fx8PC4bzt3d3fOnctzfRe6detG3759iY6O5rPPPuOtt97i4MGDAEyePPme7bIAFi9eDBiLkAkIDw/nhRdeoEmTJmzcuJFSpUoxffp0wsLC6Nu3r63DE0IIh2SVZFop1R7on/YyAVgFTAFWYEyUiwFvAb5AEjAEKKW1bqm1bgqUTGsPUCqtnRBC5Ni56HMZ+0h3rn7vGun7cXWCx9OWD6boFM5HnzdzhA8upRQtKrRgwbMLuPDOBaZ3mU69Uneu6vH38c+yf/i1cBmJsrLixYvzxx9/kJiY9a6ViYmJ/PHHHxQvXtws9/z+++/55ptvaNWqFTVq1OCxxx4jKCgIX1/fTNtv376dhg0b5ovR1rx6/fXX8fLyYtmyZbi7uzNmzBhOnjzJsGHDcHaWWrRCCJFb1voNOjDt62Wgg9b6WPoJpVQd4H8YE2gD8IXWeu7tnbXWN4H3lVINgMeBp4CvrRG4ECJ/uJF4q6JvUbfcXaPIbf1iEmPyGJHITLECxRjefDjDmg1j19ldBIQEcOTykSz3rY5LiqNxQGPKFS6Hv48/Lz38Eg8VfMjKUT94unTpwsKFC/H19WXmzJn3JMzXr1/ntdde4+LFi1kmu6YyGAy89tprvPbaazlq//PPP5vlvvnBjBkzUErh7u6On58fzs7OfP11zt9GffTRRxaMTgghHJdV9plWSh0HagAfaq0nZ3L+PWASoIGGWuujWVynL/AjcFFrXd6CIYs8kH2mhT0KjQql3izjaOdLDWFRd9Ov0T8IFv+Vdr1XQ/EqZeJccWuyw32mcyslNQUnQ+ZTCQIPBjLwp4EZrws4F6B33d74+/jzSMVHcr03ssjeuXPn8PHx4cqVK3h4eNClSxeqVq0KwOnTp/n999+5ceMGpUqVIjg42Kb/DwQHB2dZ7ftBYTDcmohoyr8JrTVKKVJSUiwRlkUYDAa6dOnCiBEjctW/TZvMP7gTQjg+R95nulza1z+zOH/78Xv3vrjl77SvMuwghDBJhSIVcFJOpOgUNpw07iNtylTvxBRYf9L43NngTPki8nmetWSVSAMEhATc8To+OZ7Ffy1m8V+Lqe9ZH38ff15s+CLFChSzcJQPlgoVKrBt2zb69+9PcHAwK1euzEjS0j+k9/b2ZvHixTZJpK9evcr333/PvHnzOHr0KMnJyVaPwZ4MGDDA1iFY1fr161m/fr3J/ZRSD/zPihDCNNZKpj0wjjpfzeL89fQnWuuEbK4Tn/bV1TxhCSEeFEXcitDdqzsrQ1cSGQtBx4z7SOfU6mNw2bg9Nd3rdKeIWxHLBGou7u4wevS9x/KR6/HXuXozq/9WjNuYDf9tOO9vfJ++9fvi7+NPs/LNZLTaTOrUqcPevXvZtWsXW7duzSg0Vr58edq2bUvr1q2tHtOGDRuYN28ea9euJTExEa01Li4uVo/D3ixYsMDWIVhVbmddSu0FIYSprDXNOxVjMt1Aax2ayfl6wGFAa62zHILIaTthWzLNW9irLeFb6LDIWNm3cRnYNShn22PdTIJW8+HApbTrDNhCuyrtLBeoyDGtNVtPbyUgJIDVx1aTlJqUbfuHSz+Mv48//Rr2s/8PRESOnDlzhvnz57Nw4ULOnj0LGH8umjRpQv/+/Xn++ecpUaKEjaMU1mIwGPD19WX+/Pm2DiVbfn5+tG7dGj8/P1uHIsQDwxLTvK25NZYQQthUuyrtMqpEH7gEfVdC/H1m9MUnw/OrbiXS9T3r07ZyWwtHKnJKKUX7qu1Z2msp594+x6SOk6hevHqW7Q9FHuLVX1+l7JdlmX/Avt9si6wlJiaydOlSOnXqRPXq1Rk/fjwREREZI4vHjh1j7969DBs2TBJpYZcCAwP5448/bB2GECKPJJkWQjwwlFIs6r4IDxfj/rg/HYdH5sGyI8Y10bdLTIGlR4znfzpuPObh4sHCbgtlmrCd8vTw5P1W73Ni+Ak2vrSRXnV74WzIfOpBXFIctUrUsnKE+dP58+fZu3cv27dvz/JhLgcPHmT48OGULVuWfv36sXnzZpRSPPXUU6xevZrmzZsDULt2bbPdMz/w8/PLcqR27dq1GXt232306NH4+PhYMDIhhHBs1t5c8FWl1OVMjmeUnFVKfZJNf89szgkhxH15l/Um6Lkgui/rTmxSrHGEehWU9jDuP13EDaITjMXG0tdIgzGRDnouCO+y3rYLXuSIQRnoWK0jHat15NKNSyw4sIDv9n9H+PXwjDZ1S9WlVcVWmfZP1akYlHzWfD8//fQTI0aM4MSJE9m2M0dRp5kzZzJ//nwOHjyYMfpcq1YtBg4cyIABAyhTpgwAX375ZZ7uk18FBgYCZDqluFu3bllOi46IiMgy0RZCCGH9ZPqVbM6lL94enU0bIYTIs07VO7F94Hb6B/XnaJRxJ77I2FvbXt2tvmd9FnZbKIm0AypTqAwfPvohH7T+gI0nNxIQEsDa42sZ6jM0yxkGCw4s4NuQb/H38adv/b4Uci1k5ajt32+//UbPnj1JTU2laNGiVKtWjSJFLLcGffjw4Sil8PDwoHfv3vj5+dGqVeYfhgghhBDWYs1kWuZFCiHshndZbw6/cphtZ7Yxc99Mgo4FkaJvzfV2NjjTvU53Xm36Km0rt5Wp3Q7OoAw8XuNxHq/xOBdjLmabIAeEBBB8IZjgC8G8vf5tXmz4Iv4+/jxc5mErRmzfJkyYQGpqKmPGjGHEiBG4ulpnkw0XFxcKFiyIez6rTC/Mp23bttSpU8fWYQghHhDWSqbbW+k+wgaUUkfvOmTtGQ9C5IpSinZV2tGuSjuiE6I5H32emMQYCrsWpnyR8o5d7fnqVXj00TuP7dgBDz1km3jsSNnCZbM8t//ifvZd2JfxOiYxhtnBs5kdPJvm5Zvj7+PPc/Wfw93lwU7mDh48SKNGjfjkk+xWZpnPlClTmD9/PqGhocyePZvZs2fTsGFDBg0aRL9+/ShevLhV4hD2b8uWLbYOIcdWrlzJ1q1bTe6nlOLkyZPmD0gIYTKrJD1a623WuI8QQuRWEbciFCnlwMnz3VJSIDT03mMiW0sOL8ny3J7ze9hzfg9vrX+Llxq+hH8Tf+p7mrBZeT7i5ORk1dG/t99+m7fffps9e/Ywd+5cli9fzqFDh3jjjTd477336NatGwMHDiQ1NdVqMQnH1r59e3bs2JHn9fx5cePGDW7cuGFyP5kpJYT9kBFEkWda63q3v759n2khhHAkn3f8nDaV2xAQEsBv//xGqr43Ofsv4T9m7JvBjH0zeKTiI/j7+NO7bm8KuhS0QcS20bBhQ86dy/P2nCZr3rw5zZs35+uvv2bp0qXMmzePP//8k2XLlrF8+fKMdn///Tc1a9a0enzCsaQXs7OV1q1bM2jQIJvGIITIG0mmhRBCiDTOBme61u5K19pdifgvgrn75zLvwDwuxFzItP2us7vYdXYXb/7+Jv0f7s/EjhMp4FzAylFb35tvvkmfPn0IDg6mSZMmVr+/u7s7fn5++Pn5cfz4cb777ju+//57Ll82bhhSp04dmjdvzoABA3juuecoVqyY1WMUtjFkyJActTt+/Pg97ZVSBAQEWCSuzNSoUYMBAwZY7X5CCPNTtvpUTinVAziotT5lkwCExdw+Mn327FkqVKhg44iEeABFRYHnXbsJXr4MpUrZJh4HlpyazM8nfmZOyBx+/+d3NJn/v9mwdEMO+h98YKZgjhkzhm+++YZx48bx9NNPU6lSJZvGk5yczNq1a5k/fz7r168nJSUFpRRubm7ExcXZNDZbMxgM1KhRg9atW99zLjAwMMtzO3bs4NSpU6Q40BIRg8GAUipXo85KKat9rwaDIcstyYQQlnHu3DkqVqyY/rKi1jrPU6xsmUynYtwOKwb4Czh42+OI1joxkz59gHbAAq31vrvPC/sgybQQdkCSaYs4ff10xmj1pRuX7jg388mZvNr0VRtFZl1OTk45bmuOfaZNdf78eRYsWMCCBQs4ffq0QyWDlpCbBDO9vTUTTHMwGAwYDAb69+9P5cqVs2wXGBhIRETEPUX0Ro+2zg6tkkwLYX35MZm+3e2BJAPHMSbWh9K+HgV6A18DW7TWj1k+SpEbkkwLYQckmbaopJQk1p1YR0BIABtObsDdxZ0Lb1+gaIGi97TVWvPKL6/Qrko7utfpjpuzmw0iNi+DwWBSe1sWBtuyZQvt2z/Ym4oMHDgwT/0XLFhgpkgsb9asWXzwwQcYDAYmT56Mv79/pu3at2/P9u3bbfZBgSTTQlhffkumawON73qUuKtZZsEp4IbWOh+V3c1fJJkWwg5IMm01p66d4sDFA/Ss2zPT8/vO76PZ3GYAlHQvycBGAxniM4QaD9WwZphCPDBOnTqFr68vO3fupF27dsybN48qVarc0UaSaSEePJZIpm1WgExrfRzj6PPS9GNpSVgjbiXXzYBymXSXzfWEEELYhWrFq1GteLUszweE3CpodCXuCl/s+oIvdn3BY1Ufw9/Hn2frPIurk6s1QnVYu3btylP/Rx55xEyRCEdQrVo1tm3bxrRp0xg1ahQNGjTgs88+Y/jw4bYOLUN4eDiFChWydRhCiDyy2ch0TimlGgDvAS8CiUAA8JXW+rQt4xJZk5FpIeyAjEzbhf/i/6Pc1HLEJWVdAKu0R2kGNhrIYJ/B2SblD7L0Nb+5YYs12/YmKSkJFxeXXPXdu3cvzZo1M3NE1nP8+HEGDBjAvn37aNWqFfPnz6dGjRo2H5kWQlhfvprmbSql1FBgFrBGa93D1vGIrEkyLezR9u3b89S/TZs2ZorESiSZtguJKYmsPraagJAAtp7eet/2nat3xt/Hn661uuLilLvkJz9KT6bLly9vUvGzdOHh4RaIynE0aNCAxYsX06hRoxz3SUxM5OOPP2bq1KkkJSVZLjgrSE1NZfLkyYwZMwYnJyfGjh3L2rVr2blzp10l0xEREXz++eds2rSJ8+fPk5CQkGk7+YBIiNx5oJNpAKXUr8DjwGta629tHY/InCTTwh49cCNbkkzbneNXjjMnZA6BhwK5evNqtm3LFiqLX2M/hvgMoVJR2245lZWkpCSmT5/OihUrOH78ONHR0Zm2M8e/n/SCZ+XKlaN///74+flRo4asOc8pg8GAi4sLI0eOZOTIkff9QGLfvn34+voSFhaGq6srN2/etFKklnXkyBEGDBjAwYMH7a5SeVhYGK1ateL69es5qrpuy6J+QjgqSaaV6g8EAiFa66Y2DkdkQZJpYY/atWuXp/1/t2zZYsZorECSabsVnxzPqtBVBIQEsCNiR7Ztv33qW/ybZF6N2JYSEhJ47LHH+PPPP63yxj84OJi5c+eybNky/vvvP5RStG7dmkGDBtG7d28KFiyYp+vnd2PHjmXChAmkpKTg4+PDwoUL8fLyuqddUlISo0ePZsqUKSQnJ+Pt7c3ChQupV6+eDaK2jJSUFMaPH8+aNWsAOHDggG0DStOzZ0+CgoJ4/PHHGTt2LF5eXhQuXNjWYQmRr0gyrVR7YDNSzduuSTIthB2QZNohhEaFMidkDgsPLeR6/PU7zhVyLcSFty9Q2M3+3lBPnjyZESNG8PjjjzN9+nQmTJjA4sWLiY+P5++//2bx4sVMmzaN999/n7Fjx5rtvvHx8axYsYL58+dnLN0oVKgQzz33HAMHDqRly5Zmu1d+s3//fvr3709oaChubm58+umnvPvuuxkfMoaEhODr60toaCjOzs58/PHHfPjhh7maVi9MV7JkSQoVKsSJEydwdZWChEJYgiWSadM2ijQjpVTF+7e6R8m0r469eEcIIYQA6paqy7Qu07jw9gUWdlvIIxVvVZ1+of4LWSbSRy8f5ecTP5OSapspqitWrKBw4cIsXbqUmjVrZiRkLi4u1K1bl88//5zly5czfvx4Vq5cabb7FihQgJdeeoktW7bw999/8+GHH1K0aFHmzp1L69atqVu3LlOmTCEyMtJs98wvvL292b9/P++++y5JSUmMGDGCNm3acPToUUaNGkXLli05evQojRo1Ijg4mFGjRkkibUVxcXE0a9ZMEmkhHIwt95lOAa4BB4EDaY+DQJjWOtP5YEqp5UAvpAiZXZORaSHsQEwMjBhx57GJE0GmDdq9w5GHmRMyh0Heg2hUplGmbQb+NJDAg4FULFKRl71fZlDjQZQvUt5qMRYtWpTmzZuzYcMGAPz8/Fi4cCGJiYl3JGBNmjTBw8ODbdu2WSwWrTW///478+fPZ926dSQlJVG6dGkuXLhgsXs6ul27djFw4ED++eefjGPOzs6MHDmSjz76CGdnm+2cahUDBw5k8eLFdlULo379+lSuXJlffvnF1qEIkW/lq32mAQU8BHQA2t92PF4pdRhjYn0Q+AcoAPTGmEj/C3xozUCFEMLhFC4MM2faOgqRCw1KN+CbJ7/J8vz1+OssO7IMgLPRZxm9dTRjt43l6VpP4+/jz+PVH8fJYNkRxaSkJErdtmQgfc1ydHQ0xYsXzzheu3ZtfvvtN4vGopTiiSeewM3NjRs3brB+/Xq7SpLsUYsWLejZsycTJ04EjH+GQ4cO5ZNPPrFxZNZjb8scX3rpJcaPH09UVNQd/7aEEPbNZtO8gYHANGArcB1jcq2AgkAzYDAwE1gP/IRxn+kU4EegllKqsrUDFkI4Licnp1w/8vsojXAsiw8t5mbyndWVU3Uqa4+v5akfn6L69OqM3z6eizEXLRZDmTJluHjx1vXLli0LwLFjx+5od+HCBYtWSz537hzjxo2jevXqdOrUifXr11OjRg1G3D0rQ2QICwujZcuWTJo0CScnJ7p06QLAjBkzePzxxzl3Ls8DNSIX3nnnHVq2bMkTTzzBkSNHbB2OECKHbPYOUWu98PbXaWuoHwYa3fa1GsYEO50TMCztgVIqGjgC/JX+0Fr/aeHQhRAOKC+jEPY2giEebBWLVqRJuSYEXwjO9PyZ/87w8ZaPGbN1DM/UfgZ/H386Ve+EQZnv83MvLy8OHz6c8fqRRx5Ba83kyZNZvXo1BoOBbdu2sWPHDry9vc12XzDufxwUFMT8+fP53//+R0pKCh4eHhlbZj366KNmvV9+8uWXX/Lxxx8THx+Pl5cXCxcupEmTJmzevBk/Pz82btxIgwYN+Oqrr/D19bV1uA+Uzp07k5SUxP79+2nUqBGVKlWiUqVKGdvC3U4pxebNm20QpRDibnZdzVsp5QE05M4Euz7gflfT9G9Ca61lCMnGZM20EEJY3v6L+wkIDuCHwz8QmxSbbduqxaoy2Hswfo39KF2odJ7vPX36dN588012795Ns2bNSE1NpWHDhhw7dgxPT0/KlSvH4cOHSUlJYd68eWZJzA4cOMD8+fNZsmQJ165dQ2tNy5Yt8fPz47nnnqNQoUJ5vkd+derUKXx9fdm5cydKKd566y3Gjx+Pm5tbRpuYmBjefPNNFixYgFKKJ598kjlz5mTMOshPBg4cyKJFi+xmj2kg06Q5K/a0P7YQjuSB3xoLQBlLhtbi3lHsshiTaSk9aWOSTAshhPXEJMTw4+EfCQgJ4MCl7PfMLVGwBBfeuYCrU94qBl+5coX169fTpEkTateuDcA///xDz549M0asnZycGDZsGF999VWe7gXGStSHDh0CwNPTk5deegk/Pz/q1KmT52s/CAoVKkRcXBzVq1cnMDCQVq1aZdn2l19+YfDgwVy6dInixYszffp0+vXrZ8VoLe/dd99l1apVhIeH2zqUDKYW6Wvbtq2FIhEi/5JkOhtKqZLAw1prmfdiY5JMCyGE9Wmt2XdhHwHBASw9upS4pLh72rzS5BVmPTUr1/f4559/WL16NadPn8bNzY1GjRrRp0+fjAJkAMePH+fq1avUqlWLEiVK5PpetzMYDCilaNKkCU899ZTJdQw++ugjs8ThqJycnHjttdeYOHEi7u53T+4zik6I5lz0OW4k3iAlLoWpo6ayasUqDAbDA1PQ7cyZM1SuLCV5hMivJJkWDkGSaSHswPXr0K3bncfWrIFixawfi7C6/+L/4/u/vicgJIDDl2+tbT7gfyDL7bbCroRRu0TtjD2j7zZt2jTef//9e6aXli9fnl9//ZX69eubLf67pSfTptJay5RYYMuWLbRv3/6e41prtp7eysx9M1kTtoYUfevPyUk50fS/poQtDONq1NVc/fnbQufOnVmwYAHly5u2Vdzs2bP54IMPiI6OtlBkQghbc8hkWinVQ2u92oLXLwdU0lrvttQ9hGkkmRb2qEOHDiilWLhwIRUqVKBDhw457uuQxV6iosDT885jly+DbLnyQNFas/vcbgJCAjjz3xm2DNiSaburN69S7styVClWhSE+Qxjw8ABKuN8aVf7jjz9o27YtWms8PDyoXbs20dHRnDp1itTUVGrWrMmxY8dMWvdpioEDB+ap/4IFC8wUSf6x/+J++gf152jU0ewbxkK9KvVY1H0R3mXNW0zOEgwGA8WKFWPatGn079//vu0jIiLw8/Njyxbjv40H/YMXIfIzR02mUzFW2h6vtV5pxutWxLjf9EDgc631p+a6tsgbSaaFPUof2Tp27Bi1atXK/8VeJJkWd0kfpc3MtN3TeGv9Wxmv3Zzc6FW3F/4+/rSu1Jrnn3+e5cuXM2DAAGbMmIGHhwcAf/31Fz179uTUqVOsW7eOJ5980irfi8ibjSc30n1Z9zsK1xW/UZwmJ5tQKL4QNwrcILh6MNcKXcs47+HiQdBzQXSq3skWIefYwIEDWbhwIUopnnnmGQICAvC8+3dhmjlz5vDee+8RExNDxYoVmTt3Lp06Wef78/Pzy3VfpRTz5s0zYzRCPBgcNZn+G6iOseJ2BMZ9on/UWt/no9BMr+UBdAdeADpi3NorGRiotf7BbEGLPJFkWtij9OIuzZs3p0CBAvm/2Isk0yKHtNbUnVWXsCthmZ73KunFpfGXcHd259TJU7i63lm87Ndff+Xpp59m1KhRfPqpZT7XTkpKwsXFJVd99+7dS7NmzcwckePaf3E/bRa0yUika16syfN/PE/rsNa4pNz6M05ySmJHnR0sbb2Uv8v+DRgT6u0Dt9v9CPW6desYPHgwly9fpmTJksycOZPevXtnnD979iyDBg1i8+bNaK3x8/Pjq6++onDhwlaLMf0DXlPeh6e3d8gPeIWwA46aTLsAbwLvAyW4tY3V38BuYB9wALgMXEt7FAQeAopjrNzdFGiW9ijArb2nVwMfaa1PWPSbECaRZFoIOyDJtMihSzcu0X5h+yyTaQDGgaG2gRcnvIi/jz8tK7TMGOWOjo6mWLFiDBkyhG+//dYiMTZo0IDFixfTqFGjHPdJTEzk448/ZurUqSQlJVkkLkejtabB7AYZU7tbH2vNx6s+xjU56+ruic6JfNrrU3bW2QlAfc/6/DX0L7tfQ3316lVeeeUVVqxYgVKKPn36MHPmTFavXs27775LdHQ05cuX57vvvqNLly5Wj2/ChAkmtY+KimLu3LnExcVJMi1ELjlkMp1xI6UKAa8CrwHp34UpN0//rZ2AMYn+Wmu913wRCnORZFo4goiICAoVKsRDDz2Ubbtr164RExNDpUqVrBSZmUgyLUygtWZHxA4CQgJYGbqSxJTEOxuMwbgJZTfjy/qe9fH38efFhi9SrEAxDAYDvr6+zJ8/3yLxGQwGXFxcGDlyJCNHjsTJKftdMPft24evry9hYWG4urpy8+ZNi8TlaLaEb6HDImO9iJoXazJj3oxsE+l0ic6JDBs0LGOEesuALbSr0s6SoZrN0qVLGTZsGNeuXcPNzY2EhAS01vj6+vLVV19RtGhRW4eYrbi4OKZMmcLUqVOJjo7GxcWFIUOG8M0339g6NCEcjiWSactUCsmE1vqG1noyUBV4AlgAnMGYJN/vkQBsA94Gymut+0kiLYTIi6pVq/Lee+/dt937779PtWrVrBCRELajlKJN5Tb80OMHzr99nimdplCrRK0s2x+5fIThvw2n3Jfl+PHwjxaPb/To0WitGTt2LC1btuTYsWOZtktKSuKjjz6iVatWHDt2jMaNGxMcHGzx+BzFrOBb26L1/aNvjhJpANdkV/ru7HvrOvtyv72atfXt25cRI0agtSY+Ph6At956i/nz59t1Ip2SksKsWbOoXr06Y8eOJSYmhj59+hAaGiqJtBB2xLSNGs1Aa50KrE97oJQqDzwCVABKYZzeHQ9EpT0OA8Faa5mjJYQwG611jteqyRaC4kFS0r0k7zzyDm+3fJutp7cSEBLAMrUMrgIH72x7k5ucLnoaMO5BvWjRokyvmZOqytkZPXo0Xbt2pX///gQHB+Pt7c2nn37Ku+++mzHdOCQkBF9fX0JDQ3F2dubTTz/lww8/vO8o9oMiOiGaoGNBgLHY2KNhj5rU/9Fjj1L8RnGuFbrG6mOriU6IpohbEUuEajZXrlzB39+fNWvWAFCnTh3CwsKYNm0aMTExTJ06lUKFCtk2yEwsX76cUaNGcfLkSbTWPPbYY0yaNAlvb/teqy7Eg0j2mRZmJ9O8hSPI6bTUvn378tNPPzneNFGZ5i3MyGAwgMr8gyWDyn6Sm1KK5ORks8SRmJjIqFGjmDp1KlprHnnkEb799luWLFnC5MmTSU5OpnHjxgQGBtKgQQOz3DO/CI0Kpd6segB0OtSJj4I+Mvkan3X/jI0PbzRe79VQvEp5mTVGc1q9ejWvvPIKUVFReHp68u2339KtWzfmz5/P22+/nbF8Z/78+ZnuwW0LmzdvZsSIEezfvx+tNY0bN2bixIlWqzAuRH5niWneVh+ZFkIIR5CamsrRo0f53//+53jrpYUws0qVKmWMAN9MvklMQgxxSXGUdC9JIdfMR/b+S/iP2MRYCrsVJiYhhsJuea+U7OrqyuTJk+nWrRsDBw5k165dNGzYEABnZ2fGjBnDRx99hLOzvL25243EGxnPC8XnbjTWI8Ej43lMYkyeY7KE69ev89prr7F06VK01vTs2ZPZs2dTsmRJwLglVadOnRg4cCD/+9//6NSpE0OHDmXy5Mm4u7vbJOaDBw/ywQcfsGnTJrTWVKtWjfHjx9O3b9/7dxZC2JT8byOEeGDcPd1z4cKFLFy48L79Bg0aZKmQhHAIp0+fvufYpRuXKFagGAWcC9xzTmtNnZl1uPbvNf7lX8pNLUe/Bv0Y4jPELNsqtWjRgp49ezJx4kTAOPo9dOhQPvnkkzxfO7+6/UOPGwVuZNMya7Fut/alLuxqvW2kTFGvXj0uXbpE8eLFmTFjRqYJacWKFdm0aRMzZ85kxIgRzJ49m/Xr17NgwQJat25ttVjDw8MZOXIky5cvJzU1FU9PT0aNGsXQoUPlAyEhHITVCpAJIYStpa+TTt+n8/bXdz+cnZ2pUqUK77zzDmPHjrV16ELYnTKFylDAuQDRCdGERoWy9/xeQqNCiU6IZuvprZz499aulTcSbxAQEoDPHB+afteUufvnEpsYm83VsxYWFkbLli2ZNGkSTk5OGdsazZgxg8cff5xz5/I8ay9fqlCkAk7K+IFicPVgkpxMK0WT5JREcHVjMTdngzPli5Q3e4zmcPHiRZ566imOHDly35Hd1157jYMHD/LII49w8uRJq073fv311/Hy8mLZsmW4u7szZswYTp48ybBhwySRFsKByJppYXayZlo4Aktv5WNzsmZaWJDWmq2ntzJz30zWhK0hRd/a89ZJOVG5WGVOXTuV7TUKuxbmxYbGfasfLvNwju775Zdf8vHHHxMfH4+XlxcLFy6kSZMmbN68GT8/P86ePUvRokX56quv8PX1zcu3mC/1XtGblaErAfh4xcd0ONohx33/V/9/jOs1znidur1Z3nu5RWLMq8DAQJP/7rXWfPnll3zyySfExcVZJrC7GAwGlFK4u7szaNAgPO/+fX0fH31k+pp3IR50Dr3PtHhwSDItHMHYsWNp3LgxzzzzjK1DsQxJpoWF7L+4n/5B/TkadfS+bQu7FiY2KZZUnZptuxYVWuDv40+fen1wd7l33eqpU6fw9fVl586dKKV46623GD9+PG5ubhltYmJiePPNN1mwYAFKKZ588knmzJlD2bJlTf8m86nc7jOd4JzA8EHDHXKfaVOEhYVRp04dq9zLYLg1OTS9HkFOpM+sSklJuX9jIcQdJJkWDkGSaSHsgCTTwgI2ntxI92XdiU3K+RTtgs4F6VW3F1tOb+FcdPbvW4q6FaX/w/356vGvcDLcqnFQqFAh4uLiqF69OoGBgbRq1SrLa/zyyy8MHjw4Y93s9OnT6devX47jzc+01jSY3SDjg5BWYa34ZOUn2SbUic6JfNrrU3bW2QlAfc/6/DX0L5MSQHGvgQMH5qn/ggULzBSJEA8OSaaFQ5BkWjiClJQUYmNjcXd3v2N92s2bN5k8eTIHDx6kSpUqvPfee5QrV86GkebSf//Byy/feWzuXCha1DbxCIe3/+J+2ixoY1Iinc7DxYP/DfgfkTciCQgJ4Ne/f0WT+fuPNpXbsM132x3HnJyceO2115g4cWKOKi5fu3Yto6KzwWAw29Zc+cHdf481L9ak7x99eTTsUVxSXDLaJTklscNrB0tbLc0YkfZw8WD7wO1mKSInhBDWJsm0yBWl1IvAo4AP0ABwBQZqrQMtdD9JpoXdGz16NOPHj2fr1q08+uijgHHUpkWLFgQHB2dMpatQoQIHDx6kePHiNo7YzBITYdEiWLEC/voLrl4FFxcoXx4eeQQGDzZ+NYclS2DBAuN9rl+H0qXh0UfhtdegZUvz3ENY1N0jmrlx+4hmxH8RzN0/l7n753LxxsU72v3Q4wdeaPDCHce2bNmSq+JQq1at4pVXXuHy5cu5jjs/ymyGQfEbxWlysgkeCR7EusUSXD2Ya4WuZZz3cPEg6LkgOlV3zD2PV61axYoVKzh+/DjR0dGZ7pmulOLkyZM2iE4IYQ2STItcUUqdBioDV4DYtOeSTIsHWuvWrQkPD+f8+fMZx9auXUu3bt2oVasWr776Kr/99hsbNmzg888/5/3337dhtGZ25gw89RQcvU9iNHw4fP015HY6582b0KsX/Ppr5ucNBvjkExg9OnfXF1Zz+1rbPF3nrrW2yanJ/HziZ74N/pYNJzfwUMGHOPf2uUy320rVqby4+kWeqvkUPev2zLRNZqKioiglyxvuYcra9/qe9VnYbaFDjkhrrenTpw+rV6/ONIEGMnZ3kLXIQuRvlkimZWusB8PLQBWtdSngW1sHI4Q9CA8Pv6fQzE8//YRSih9++IHXX3+ddevWUapUKVauXGmjKC0gKenORLphQwgMhD//hA0bjMmth4fx3DffwKRJub+Xn9+tRLp9e1izBvbuhXnzoHp1SE2FMWNgzpw8fEPCGmYFzzLPdfbdeR1ngzPd6nTj9xd/5+TrJ1nUfVGWSfLmU5tZcmQJLwa9SIWpFXhn/Tscv3L8vveURDpz3mW9OfzKYbYM2EKvur0yts1K52xwpnfd3mwZsIW/hv7lkIk0wHfffceqVato2LAh69evp0ePHiilOH78OD///DPPPfccAKNGjeLUqewr0FtKSkoKixcvpnfv3lStWpVChQpRqFAhqlatSq9evVi8eLEsVRDCTsnI9ANGKTUC+BwZmRYPuAIFCtCzZ09++OGHjGN16tQhLi6OiIiIjGPdunVj9+7dXLp0yRZhmt/KldC7t/F5y5awYwc43fkmmpAQ47mkJChWzFjMzNR9T//3P3jsMePzrl0hKOjO+1y5Aj4+EBFhvMepU5DfptLnE9EJ0Tw06aE7tr/KLSflxNUPrlLErYjJfXst78WqY6vuOd6uSjv8ffzpXqc7bs5umfQUORGdEM356PPEJMZQ2LUw5YuUz9Xfk7159NFHCQ4OJjw8nDJlyjBw4EAWLVp0xwj0nDlzePXVV9mwYQMdOuR9BoYpgoOD6du3L+Hh4QBZTj+vUqUKS5YsoVmzZlaNT4j8xBIj03azK7xSqjBQFSgMON2nOVrr7RYPKo+UUp5As7RH07RHibTTC7XWviZcqzLwOvAUUBFIAE4Cy4GZWmvrbIwoRD7h7OxMbOyt9YLXrl3j77//pk+fPne0K1y4MP/995+1w7OcXbtuPf/ww3sTaTAmuU8/bUyAr1+HY8egQQPT7jNlivGrszPMmnXvfUqWNI56P/+88R5z58J775l2D2EV56LPmSWRBkjRKZyPPk+RUqYlaZduXOKn4z9lem7r6a1sPb2VUu6l8G3kyxCfIdR4qIY5wn2gFHErYvLfiyM4cuQILVu2pEyZMsCtbajSp3UDDBkyhGnTpvHFF19YNZnetWsXHTt2JD4+HldXVzp37kzTpk0pXbo0WmsuX77M3r172bBhA+Hh4bRt25aNGzfSunVrq8UohMiezZNppdRg4FWMhbFyujBPYwex50CkOS6ilOoKfA/c/r+cO9Ak7fGyUuoprfU/5rifEA+CatWqsXv3blJTUzEYDPz8889ore95k3L58uX8NU00MfHW82rVsm5XvXrmfXIiJgY2bzY+79gRspqd0qMHFCkC0dHGxP32ZPrvv6FxY4iNhUaNYM8ecM1k+57kZGjVyjh9vEAB46h63bqmxSuydSPxhlmvF5MYY3Kfhwo+xA89fiAgJID/hf8v0zZRcVF8sesLvtj1BS0qtGBok6E8X/95XJ3uv4+yyL9u3rx5x17j6XuTR0dHU/S23Q0aNWrExo0brRZXbGwsPXv2JD4+nt69e/PNN9/gefd2hmkiIyMZPnw4K1eupE+fPvz99994pC/HEULYlM3WTCulnJRSazCu4W2YFosy4eFoIoANpnZSSjUGlmFMpG8AI4FHgMeA79Ka1QJ+SRvdF0LkwDPPPMPly5d59tln+frrr/nggw9wcnKia9euGW201hw4cICqVavaMNJc+u8/43Tu2x///Qe1a99qk936wPSKtkpBzZqm3XvfvlsJeNu2WbdzdYUWLW71SUq6da5mTfjqK+Pzgwdh1KjMrzF2rDGRBpg8WRJpCyjkWsis1yvsavp/Va5OrvSp14fN/TdzfNhx3m35LiXdS2bZfve53fiu8aXI50V4YdULnL52Og8RC0dWunRpoqKiMl6nJ6z//HPn+MPVq1eJj4+3WlwBAQFERkby0ksvsWzZsiwTaTB+D8uXL+fFF18kMjKSgIAAq8UphMieLQuQDQWewZgYXwYmAr0xJont7/Ow7oKW3PsU6AqU0VpXBvxzcY2vgYJAMtBZa/2Z1vpPrfX/tNZDgPQSw7WAd8wRtBAPgvfff5969erxyy+/8NZbb3Hp0iXee+89KlWqlNHmjz/+4MqVK445pS4x0bg++vZHYqJxWnWRtEkukyZBZpVrDxyAX34xPn/hhVvtcyo09Nbzu4q83SP9fHKycTT6doMHw7PPGp9/+SVs2XLn+Z074fPPjc+7dIFhw0yLU+RIhSIV7ilOlVvOBmfKFymfp2vUKlGLLzp/wbrn11GhcPY1ORJSElhyZAmPLniU/Rf35+m+wjHVqFHjjsJiTZs2RWvNt9/eqsd67Ngxtm7dSvXbZ+RY2Nq1aylYsCDTp0/PcZ/p06fj5ubG2rVrLRiZEMIUtpwq3T/tayjwqNb6WnaNHZHWOk/7vSilmmHcHxpgntb6z0yafQkMBLyAN5RSE7TWSZm0E0LcpkiRIuzdu5eVK1cSGRlJ06ZNaXvXKOq///7LG2+8kVHtNV8oWRIWLzYm1Tt3QtOm8OabUKsW3LhhPPbll8bE29vb+NxU526r53G/AoS3CoHA2bP3jizPnWuc4n3pEvTvb9yrunhx49TwF180fhhQsqRxH+vcbuElslXErQjdvbqzMjTvVe271+lulqJWme2TnJ1zMedos6CNQ++TLHKnc+fOfPTRR4SGhlK3bl06d+5MxYoVmT9/PgcPHqRSpUps3ryZpKQk+vfvf/8LmsmxY8do1arVHVPN76dYsWK0bt2aQ4cOWTAyIYQpbJlMe2Fc+zwuPybSZtLttucLMmugtU5VSi3CWKG7GMaRe5OnkwvxICpYsCAvvfRSlue7detGt27drBeQtTzzjHFt8ZdfGrepGjDgzvOlS8O4ccaRYXd3068fc9ua2EL3mSJ8+7q/G5mszS1Z0rh11xNPGJP0oUNh2TLjKPTp08Y2330HacWFhGW82uRVsyTTrzZ9Nc/X2H9xv0mJdLrYpFi6L+vO9oHbM7Z52nd+HxdiLvBUradwNjhCKRZhqueff57k5GRu3rwJgKurK8uWLaNbt26EhIQQEhICwLPPPssbb7xhtbiuX7+e7dTurHh6enL9+nXzBySEyBV7+J/j/ptEPrjS55bGAiHZtNt22/NWSDIthMhOYiIsWgQ//QSZbY8YGQnffw9VqxoTb1Pdvu4ws6Jht3O7bSujtDe793j8cRg+HKZPh+XLjZXBlywxnnv5ZciPH3jYmXZV2lGvVD2ORh3N9TXqe9anbeVs1tDngNaa/kH9TU6k08UmxTJgzQD+GvoXSik+++Mz1oStoXzh8gxqPIiXvV+mYtGK97+QcBiVKlVi5MiRdxxr0aIF4eHhbN++natXr+Ll5UWjRo2sGlfx4sWJjDS9Tm1kZCTFihUzf0BCiFyxZTL9N9AIeMiGMdg7r7Sv/2itk7NpF5ZJHyHEbdL3ji5fvjxOTk537CWdE7evpXZosbHGUd70/aXffx8GDjRW9o6PN06p/vRT+OMPY5I6ZQq8/bZp9yhQ4Nbz+1UCT0i49bxgwazbTZpkrBB+9OitRLpmTZg2zbTYRK4opVjUfRFtFrTJVSLr4eLBwm4LM7Yiyq2tp7fmKaEHOHL5CNvObKNWiVqsO74OgPMx5/l0+6eM3zGeJ2s+ib+PP0/UeAIng3nWigv7U7BgQR5//HGb3d/Ly4udO3dy7do1ihcvnqM+V69eZefOnTRv3tzC0QkhcsqWyfRSoDHwNJD5PhcPMKVUASC9VGm2G4prra8ppWIBD4x7UN99rZe5Ncqdvlnsy0qpdmnP/9BazzUhtvssgkTmWwq7U6VKFQwGA6GhodSqVYsqVark+I29Uork5Ow+z3IgY8YYE2m4d4q3qyt06gTt20PnzsaCX++9B489Bg8/nPN7FL6tWnNmU7dvd9te39lOCS9QAGbMMMaWLjDwzmniwqK8y3oT9FyQyVOsPVw8CHouKGNqdV7MCp6V52sAzNo3iwaeDe7ZPztVp/LziZ/5+cTPVCxSkZe9X2ZQ40F5LpomxN26du3Ktm3beP3111m8eHGO+gz/P3v3HVdl+T5w/HMzVRQnLlxomeZIQc29R1mmhrtcODAzq19qfVNztbTtqDB35QolR8OVIxcKasORC/cAJ4iKjPv3xwMIcthnMK7363VenPM89/Oci++36Fznvu/reu01oqKieCErK4aEEBZhy2R6JtAPeEUpFaC1/tOGseRESXuHZKTJZ0IyberTaHPgkU2RNIt/JMhwMg2cz8RYIXKESpUqoZTC0dEx2et8RWtYsMB4Xr16yr3SCRwcjD3TzZtDXJyRtCa0qcqIpEXHLlyABg1SH3s+yZ+Tiuksr501K/nrjRuhadOMxyWyrUO1DuwYvIMBAQMyNENcu3RtFndbbJZEOjwqnICjAdm+D8Dqo6vpUr0Ljdwbse/iPpNjzoefZ9K2SUzdPpXnqz+Pr5cvHat1lNnqHG7Hjh3Zur5ly5ZmiiRtI0aM4JNPPmHp0qVERUUxe/bsNPtMjxo1ilWrVlGmTBl8fbPSHEYIYQk2S6a11lFKqU7AamCTUmomsBQ4prW2XqO/nCvJOknSWScJQMJayRTrJLXWg4BB2Q9JiNzrTEKxqlRe5wuhoXDjhvG8fv20x3p5PXx+7Fjq40xJWpE7vWsTzjs4pN3PesECWL3aeO7qalTz/uADY8m6LHm0Ks9ynvzzyj9sP7udOfvnEHA0INkMr4OdA91rdGdkw5G0qtzKbF9aXQi/kGImOatidSwNyjcgcGggh64cwi/Ijx/++YE7D1J+dx2rY1nz3xrW/LeGykUrM8xzGD71fShXpJxZYhHm1bp16yz/M2fNVUiFChXC39+f9u3bs2rVKtauXUvHjh1p1KgRZcqUAYwkOjAwkE2bNhEdHY2TkxM//fQThbJSGFIIYRE2S6aVUkn/i6gweiS/FX8uvcu11jonFE+zpKRfKKRTwQeAhCo+qVTwMav0qrOUBfZbIQ4hRGY4JPmzmd4HxugkHfYcMvnntmFDY8n4gwewfTu8847pcQ8ewN69D6+JXzWQwunTkFBlt3ZtCAgwxt+6ZbTHOnRIlntbmVKK1lVa07pKa8KjwrkYfpGIBxEUcSqCu6u7WdpfPcpUopsdEQ+MqvP1ytbjm+e/4ZOOn7Dsn2X4BfsRfNl0zc+zt88yYesEvg3+lrNvnMVO2Zk1JpF9LVu2TPE58sGDB+zZY3QXLVq0KFWqVAHg7Nmz3Lp1C6UUjRs3xim9golm1qxZM7Zt20afPn04e/Ys69ev55dffkk2RscXiaxcuTLLli2jcePGVo1RCJE2Wyakj2bM+Wy9ZbqS9JYxuXT7UQmfJM37acMErXWae7jz3dJZIXKL4sUfzuru2WMk1KklytuTNAnw8Mjc+xQpYuyz/u032LzZWOptqt/06tVGLADdu5u+V2yskTDfuWNU/v7xR3jsMfj2W+jTB06eNPpkf/dd5mIUZuPq7Iqrm/mT50cVdsrIfwozrohTkWSvCzsVZpjXMIZ5DSP4UjB+wX4s/Wepyf3h/ev2l0Q6h9q2bVuy1/fv36ddu3ZUq1aNTz/9lK5duyY7v3btWsaOHQvAb7/9Zq0wEz399NMcP36cZcuW8fPPPxMcHExYWBgApUqVwsvLi65du/LSSy8lblMSQuQcSptqi2KNN1ZqUnau11pPMVcs1qKUqgKExL9cHL/8Oq3x14CSwF9a63ppjCsOxK/d5Cetda9sB5sN8QXKzgOcP3+eCqY+RAthY2FhYWzdupXDhw9z/fp1lFKUKFGCOnXq0KZNG0qWLGnrELMnLAwe3X8XGmrM8CZUw548GSaZ+FN886axX/rIEeP1hg1GQbIEixYZFcDBuH7y5JT3+OMPI6EGo73W6tVG9fAE164ZS8nPnYNixYzZZ1MVbadOfRjjZ58lryzev7/Rwgvg55/hkQ/JIm8JjwqnxPQSZlnq7WDnwPVx19OdQQ+PCmfpP0vxC/bj0JVDACgUp0afwqO46S+Z/rryF3XK1JFkO4eYMGECX375JceOHUv188j58+epWbMmr7/+Oh988IGVIxRCWMuFCxeo+LA+S8X0JggzwpZ7pnNdMmwDR4AWwGNKKYc02mPVSPL8qOXDEiL3un37NmPGjGHJkiWp7o1zdHRk8ODBTJ8+HVdXy8+4WdV77xn9pe/eNZLg4GCjEFlCa6y9e412Uwmtw9q1S55IZ1TbtsbM8fLlsHatUSX8jTegfHn45x9jv3PCe0yfbjqR3rfPKISWEMebbyY/P2eOUZn87FkYNgwaN4b4vYYi73F1dqV7ze74H/HP9r261+ieoaXors6ujGgwAl8vX/Zf2o9fkB+3om6lmkifv30ez7meVC1eleGewxlUbxBuLm7Zjldk3cqVK2nTpk2aX+xXrFiRtm3bsnLlSkmmhRCZktf3Hed2OzGSaRfACwhMZVyrJM93WTooIXKrsLAwWrduzbFjx9Bao5SiWrVqlCpViri4OK5du0ZISAgPHjxg7ty57Nq1i61bt+b+WeqkatQwkum+fY3Z4XXrjIcpbdvCTz9l/b0WLDCWcf/6q9Fma+vW5Oft7GDiRBg+POW1kZHG8u6YGCPRXrwYHt1C4uoK338PrVsbM/E+PvDIfkORt4xsMNIsyfTIhiMzNV4pRSP3RjRyb0RaK/rmH5xPnI7j5I2TjNs8jvF/jOfFmi/i6+VL6ypZL4wlsu78+fN4eqZfTb5QoUJcuJDtSSohRD4jyXTO9jPwv/jngzGRTCul7IAB8S9vAVsfHWNpSqlH+6PIP1ciR3rllVc4evQopUqVYsqUKfTr14+iRYsmG3Pr1i1+/PFHpkyZwuHDh3n11VdZvny5jSK2kPbtjSra8+cb+5oPHzaKeTk4QNmyRnGvfv2M5dnZ+fBfsKCR3C5daiwN/+sv433KlIEWLWDUKGjSxPS1b74JJ04Yz7/9FtxT6fPbogW8/TZ89JGRtH/9NYzMXKIkco/WVVpTy61WhtpypaZ26dq0qtwq/YGpSC0hjomLYd6B5F0mo+OiWXF4BSsOr6B6yer4evky8KmBlCyUh76gy+GKFy/Ozp07efDgQaoFxh48eMDOnTspbmqFjIX4+Phk+VqlFPPnzzdjNEKIrLLZnmlTlFJlgNpAifhDN4B/tdZXbReV+WR2z3T8NTswZqdjgJZa6z2PnB8LzIh/OUVrPdlc8WZUKsl0dZA90yLnOHr0KLVq1aJs2bIEBgYm3TNj0rlz53j66acJDQ3lyJEjPPHEE1aK1Exu3YJu3ZIf+/lnY3+yELnYgcsHaLmwpcnCYOlxcXRhx+AdZul7/agzt87w3NLnOBJ2JM1xzvbO9HiyB75evjSv1Fxmqy3Mx8eHxYsX07t3b+bMmZMiYb5161bil6aDBg2yWpJqZ2eHUirNlQ6PShivlCI21jxt4oTITyyxZ9rmybQy/isyHBgFPJnKsCPALOA7beuAM0Ep1Rx4LMmhUsAn8c93Acm+wtZaLzJxj/rxYwtiVOr+EGP2uSDQB+N/O4DjQAOtdcSj97A2KUAmcqKJEyfy4Ycf8uOPP9KnT58MXbNs2TJeeukl3nvvPSabKrIlhLCJTac20X1F90wl1C6OLgT0DqBDtQ4Wi0trza7zu/AL9uOnwz8RFRuV5viapWri6+XLgKcGULyg9WZF85MLFy7g5eXFtWvXcHFx4ZlnnsEjvkPBmTNn+P3337lz5w5ubm4EBQVZ7TNLZvdmh4WFMW/ePO7evSvJtBBZlOeS6fgq1GuBpgmHUhmaEORuoIvW+paFQzMLpdQiYGBGx2utTf7+SqkuwA9AatVSjgPPaa1PZjZGS5BkWuREzzzzDHv27OHmzZvY2WWsym5sbCwlSpSgadOmNmmZIoRI3YHLBxgQMCBDS75rl67N4m6LLTIjnZrrd6+z5K8l+AX78d/1/9IcW8ChAD90/wHvJ72tFF3+cuzYMQYMGEBQUBDwcKl+wmdgT09Pvv/+e2rWrGmzGFNz9+5dPv30Uz7//HPCw8NxdHRk+PDhzJo1y9ahCZHr5KlkOn5GejvQPP7QdWAlxr7gK/HHygKNgF4Ys7oa2Km1zvpmJysyVzIdf6/KwOvAc0AF4AFwEvgJmK21vputYM1IkmmRE1WpUgUPDw+2PloEKx1t2rQhJCSEM2fOWCYwIUSWaa3ZfnY7c/bPIeBoQLK2WQ52DnSv0Z2RDUfSqnIrmy2n1lqz4+wO/IL9WHV0FQ9iH6QYo1CEvB5C5WKVbRBh/rF79262bduWWGjM3d2dVq1a0bx583SutL7Y2Fj8/PyYNm0aoaGhAPTs2ZMPPviAatWq2Tg6IXKnvJZMvwR8j5EgLwVGprZEWSlVGJgD9I8f/7LWepm1YhWZI8m0yImKFStGp06dWLFiRaau69OnD7///ju3bt2yTGBCCLMIjwrnYvhFIh5EUMSpCO6u7hlqf2VN1+5eY9GhRcwNnsuJGycSj3d+vDO/9DNdif5B7AMc7Rxlb3U+snLlSiZMmMCpU6fQWtOuXTumT5+eoarkQojUWSKZzthaR8voF/9zu9a6f1p7fbXWd7TWAzFmshXwsjUCFELkHREREbi4uGT6uoIFC3Lnzh0LRCSEMCdXZ1dqutWkkXsjarrVzHGJNECpQqUY03QM/436jy0DttCrVi8c7Rzx9fJN9Zpp26dR368+3+z/hvCocCtGK6xty5YtNGzYkL59+3Ly5Enq1avHhg0b2LRpkyTSQuRQtmxh5Ikxyzw7E9fMwuipXN8iEQkh8qzsrMLJRXUPhRC5gFKKth5taevRltDIUEoULGFyXHRsNPMPzufyncuM/HUkYzeNpW/tvvg28KVB+QZWjjr3u3jxIhcvXuT+/fupjmnZsqUVIzIcOnSIt99+m82bN6O1pmrVqrz//vsZLpYphLAdWybTCf/lCElzVHIJY03/V0cIIdJw5coVduzYkelrcqWICHjnneTHPv4YihSxTTxCCJNKu5RO9dz64+u5fOdy4uvI6EjmHZzHvIPz8Cznia+XL31r96WIs/x7nZY1a9bwzjvvcPz48TTHKaWIiYmxUlQQEhLC+PHjWblyJXFxcZQuXZoJEyYwYsQIHBxs+RFdCJFRttwzHQqUBF7QWpveKJTyms7AeuCa1jr1//oIq5I+0yI3SOjpmVW5rg1JWBiUfuTPZGgouLnZJh4hRKYN/HkgS/5akuaYwk6FeanOS/h6+VK/nCzce9Rvv/1Gly5diIuLo2jRolStWhVX19S3AGS2SGVWjR49mrlz5xIdHY2LiwtjxozhrbfeytJ2JCFExuS1AmR/YCzZDtBa98jgNT8B3sA2rXVbS8YnMk6SaZEbZLQdlim5sqenJNNC5HpxOo5NpzbhF+zH2v/WJqtWbkrD8g3x9fKlT+0+uDhJUgbQvHlzdu/ezeTJk3nnnXdwcnKydUjAwy94CxUqxJAhQyj96N/rdLz77rsWikyIvCuvJdMjMfZLa2AaMEWnEYxSaiIwJX78KK31N1YJVGSaVPMWIgeQZFqIPOVSxCUWHFzAdwe+49ztc2mOdXV2ZeBTA/nqma/yfRXwwoULU716dQ4cOGDrUJJJ+gVvZv4/0lrnzi94hcgBLJFM23JDxnfAa8ATwETgxfi+zIFAKEbSXAZ4GqNXc+34647FXyuEEEIIkS+UL1KeCS0n8L/m/2PDqQ34Bfux/vh64nRcirHhUeGcvX023yfSAPb29tSoUcPWYaQwcOBAW4cghDADmyXTWutopdSzwBbAA6gFfJLGJQo4DTyrtbZedQghhBBCiBzC3s6ezo93pvPjnbkQfoH5B+Yz7+A8LoQnn2BJq91WflK3bl0uXMj25JPZLVy40NYhCCHMwJZ9ptFanwHqAp8BtzESZlOP28CnQD2tddprm4QQQggh8oEKrhWY1HoSIa+HsLbPWjo/3hmFolLRSnSq1snkNQ9iH/DCshdY8tcS7kXfs3LE1vfGG2+wa9cugoKCbB2KECIPstme6UcppZwAL4zl3Amtr24A/wLBWusHtopNZI7smRYiB5A900LkS2dvnSXkVgitq7Q2ed7/iD89f+oJQPECxRnw1AB8vXxxd3XnQvgF7jy4Q2GnwlRwrYCrc+pVr3OTyZMnM2vWLKZNm8bzzz9PpUqVbB2SEMIG8lQBMpF3STItRA4gybQQwoQO33dg8+nN6Y6zV/Z0r9mdkQ1G0rpK61y7/9re3j7DY63ZZ9rHx4fmzZvj4+OT4tzatWupVKkS9erVS3Fu0qRJrF+/nuDgYCtEKUTeYolk2qbLvIUQQgghhHWcvHEyQ4k0QKyOxf+IP22XtKXON3U4cDlnVcPOKK11hh9xcSmLuVnKokWL2Llzp8lz3bp1Y+bMmSbPnTt3jkOHDlkwMiFEZkgyLYQQQgiRD1QuWpmfev6EZznPTF13OOwwLRe2ZNOpTRaKzHLi4uIy9RBCiMyweDVvpVTixpSkxcOSHs8KKUSWcyilDj9yyJYt14QQQog8LzY2lmvXrlGiRAkcHR3THHvjxg3u3LlDpUqVqFq8Kv9d+y/T7xcZHUnX5V3Z6bMz08m4EELkVdaYmQ6Jf5xO5XhWHo/eSwgh0jRq1Ci2bdsmMw9CiFwtPDycoUOHUrRoUcqXL4+rqyu9evXi1KlTqV7z1ltvUbVqVbTWDAgYQGR0ZJbe+17MPQb+PBCptyOEEAZrJNNJW1yldjwrD5FDaK1rJX0A7WwdkxCP+vrrr2nXrh1ly5Zl2LBh/P7771YrNCOEEOYQExNDx44dWbhwIXfv3kVrTVRUFP7+/nh6erJ69epUr9Vas+3MNg6HPbqYLHP+Df2X7We3Z+seQgiRV1hjOe7gTB4XQgiz++OPP/D39+fnn39m/vz5LFiwAFdXV7p06cKLL77IM888Q4ECBWwdphBCpGru3Lns27ePcuXKMWPGDOrXr8+JEyeYPn06e/fupXfv3sybN4+BAweavP7roK/NEsfX+79O1npr+5ntXL93nS7Vu+Bon/aSc1uIjo5m5syZ/PTTT/z333+Eh4ebHGfNat5CiLzB4sm01npxZo4LIYQltG7dmtatWzN79mz27NnDqlWrCAgI4IcffuDHH3+kUKFCPPvss3h7e/Pcc89RuHBhW4ecPfb28OSTKY8JIXKt5cuX4+DgwMaNG6lVqxYATz75JF27dmXy5MlMmzaNIUOGEBsba7LlUsDRALPEsfroasKjwhP7UE/ePpltZ7ZRrnA5fOr7MMxzGJWLVTbLe2VXVFQU7dq1Y8+ePekuT5fl60KIzJI+08LspM+0yE0OHjyIv78/AQEBHDt2DKUUTk5OdOjQAW9vb1544QWKFy9u6zCFEIISJUpQp04dtm83vcx6yZIlDBkyBK013377LUOHDgVg8ODBLFmyhLj3zFcz4sjII9R0q8nx68d5YvYTyc4pFM889gy+Xr48V/05HOxsV5d0xowZvPPOO3Tq1ImZM2fywQcf8P3333P//n1OnDjB999/z5dffsm4ceOYMmWK1eKys7Pjscceo3nz5inOLVq0KNVzf/75J6dPnyY2NtYaYQqRp1iiz7TN/roppVrGP92vtb6XwWsKAI0AtNY7LBWbECL/qF+/PvXr1+eDDz7g6NGj+Pv7s2rVKtavX88vv/yCg4MDrVq1wtvbG29vb0qVKmXrkIUQ+dSdO3fS/IJ6wIABFCxYkJdeeokRI0YAJCbU5hbxIAKAucFzU5zTaH47+Ru/nfwN9yLuDKk/hKGeQ6lYtGKKsZb2008/UaRIEZYvX07RokVRyii74+joyJNPPslHH31E06ZN6datG3Xq1KFHjx5Wi+3UqVOcPHnS5LmTJ0+mOKeUQmud+DsIIWzPli2MtgFxQF3gSAavcU9ynbRfEkKYVc2aNZk4cSITJ04kJCQkMbHesmULW7Zs4erVq7z33nu2DlMIkU+VKFGCq1evpjmmZ8+e2Nvb07dv38SE2hKKOBUBoHGFxjSp0IQ9F/aYHHcx4iJTd0zl/T/fp/PjnfH18uXZx57F3s46206OHz/O008/TdGiRQESE9HY2Fjs47e+dOnShfr16zNr1iyrJdMDBgyQpFiIPMDWCWlW/4rIXx8hhEV5eHgwduxYxo4dy8WLFwkICKBs2bK2DksIkY/Vrl2b/fv3Ex0dnWZv6RdffJEVK1bQu3dvRowYgbu7OwD2yp5Ynf3lwQ52Dri7Gvfs8WQPejzZg3+u/oNfsB/f//094VEpC3zF6TjWH1/P+uPrqehakaGeQxlSf0jifSwlOjoaNze3xNcFCxYEjBZjSbfwPPHEE/z2228WjSWpRYsWWe29hBCWY43WWOaUEK9sFBFCZMuZM2cyPNbd3Z1Ro0ZZdfmfEEI8ql27dty5c4d169alO7Zbt274+/vj4ODAhQvGtsDuNbubJY7uNbonFh9LUKdMHWZ3ns2l/7vE/Bfm08i9UarXnw8/z6Rtk2i3pJ3Fi36VLVuWy5cvJ74uV64cAEePHk027tKlS1bdhxwdHZ3la/ft22fGSIQQ2ZHbkumE0pC3bRqFECLXq1q1Ko8//jgjRozA39+fmzdv2jokIYRI07PPPovWmo8//jhD47t06cLq1asTZ7FHNhhpljhGNkz9Pi5OLvjU9yFwaCAHfQ8ywmsEhZ1Md0fwqe9j8aXONWvWTLb3uGnTpmitmTFjBnFxRkG27du38+eff/LEE0+kdhuz8/T05NChQ5m65sGDB7z99ts0a9bMMkEJITLNatW8lVKVHjl0BtBAR+BEOpc7A9WAaYAn8KfWurWZQxRZpJQ6/MghB6A6SDVvkXNVrVo1cXZaKYVSinr16tG+fXvat29PixYtcHZ2tm2Q2REZCZ98kvzY2LHg4mKbeIQQZpEwe2qfiVZ3YWFh3L17l0qVKlHnmzocDnv0P9sZV7t0bf4e8XemkuA7D+6w7J9l+AX7EXw5GABHO0cu/N8FSruUNnnN3gt7aeTeCDuVvXmfmTNn8sYbb7B3714aNWpEXFwcdevW5ejRo5QuXZry5cvzzz//EBsby/z58xk0aFC23i+j7OzscHR0ZPz48YwfPz7d/z/379/PoEGDOHbsGE5OTty7l6HavUKIJCxRzduayfSja2cS/gpnJYBhWusF2QxJmIkk0yK3CgkJYfPmzWzatImtW7dy/fp1wEiunZ2dadq0aWJy3aBBAxtHm0lhYVD6kQ+poaGQZO+gECL/OXD5AC0XtiQyOjLT17o4urBj8A48y3lm+f2DLwXjF+xHnI5j3gvzTI45HHqY2t/UpmrxqgzzHMbgeoMpU7hMlt7v2rVrbNiwgQYNGiTOPJ88eRJvb2/++ecfwPhiYtSoUXzxxRdZ+6WyYMqUKXzwwQfExsbi5eXF4sWLqVmzZopx0dHRTJo0iU8//ZSYmBg8PT1ZvHhxYp9xIUTG5fZk2hzNDe8DM7XW75jhXsJCpM+0yK0OHjzIpk2b2LJlCzt37uT+/fuAkVzHxMTYOLpMkmRaCBEvNjaWBQsWMGzYMAA2ndpE9xXdM5VQuzi6ENA7gA7VOlgqzESv//Y6M/fNTHztaOdItxrd8PXypY1HmwzNVp88eZLVq1dz5swZnJ2dqVevHr169UosQAbw33//cePGDapXr07JkiUt8ruk5cCBAwwYMIAjR47g7OzM1KlTGTNmTOKsf3BwMIMGDeLIkSM4ODgwceJE/ve//2VqVYIQ4qHcnkwPfOTQQoxZ6YnAxTQu1RhJ9GXgoNb6jmUiFOYiybTIze7fv8+OHTtYt24d8+fP5/79+yilrFqYxiwkmRYi34uLi2Px4sW8//77nDlzJtnfsQOXDzAgYECGlnzXLl2bxd0WZ2tGOqPuRd+j/OfluXX/lsnzj5V4jOGewxlUbxBuLqb/nn355ZeMGzcuxd9td3d3fv31V2rXrm3usLPswYMHTJgwgc8//xytNU2bNuXbb79l2bJlzJgxg5iYGOrXr8+iRYuoU6eOrcMVIlfL1cl0ijc2Zqo1UEdrndE+0yIXkGRa5CZaa4KCgti8eTObN29m9+7dPHjwAK01xYoVo02bNrRv355XXnnF1qFmjiTTQuRZly9fZsOGDVy9epUyZcrwzDPPpGjdt3TpUiZPnsypU6fQWuPm5paiR7XWmu1ntzNn/xwCjgYka5vlYOdA9xrdGdlwJK0qt7JaT+T/rv1Hz5968k/oP2mOc7J34sWaL+Lr5Zssvp07d9KqVSu01ri4uPDEE08QHh7O6dOniYuL4/HHH+fo0aPY2eWsGry7d+9m8ODByYqlOTg4MH78eN59910cHGzdzVaI3C+vJdOt4p/u01pLFYU8RJJpkRt8++23bN68ma1bt3Lr1i201ib3SVvrA6TZSTItRJ40a9Ysxo0bx4MHDxKPOTk5MWfOHHx8fDhz5gz9+vUjMDAQrTWFCxfm//7v/xgzZgyFC5uuqg0QHhXOxfCLRDyIoIhTEdxd3VO0v7IWrTV7L+zFL9iPFYdXcD/mfprjnyj5BMO9hjPwqYG86vMqK1euZODAgcyePRuX+KKLf//9N97e3pw+fZp169bRuXNna/wqGRYXF8eECRMSK7UrpRg1ahRfffWVjSMTIu/IU8m0yLskmRa5gZ2dHUopatSowfPPP59YwbtAgQK2Ds08JJkWIs/ZtWsXLVu2TOzNXLJkSe7cuUNUVBT29vZs3LiRl156iStXruDo6Mgrr7zChAkTKFWqlI0jz7qb927y/d/f4xfsx5GwtBcyOts74/qNKwXsC3Dy5EmcnJySnf/11195/vnnmTBhAlOnTrVk2Jly7NgxBg4cSFBQEHZ2dnTo0IENGzYA0L59e+bPny+fpYQwA0sk0zlrjYsQQliR1prTp0+zf/9+goKCOHw46+1ihBDC0mbPno3WGm9vby5evJjY8mrDhg2UKVOGLl26cOXKFWrXrs3ff//Nl19+masTaYDiBYsz+unR/PvKv+wcvJP+dfvjbG+6baFGE349nAYNGqRIpAGaN28OQGhoqEVjzozPPvsMT09P9u/fT40aNdizZw+//vorGzdupEKFCmzatIk6deqwaNEiW4cqhDAhR8xMK2MdZT3gKaAUUJCHrbNM0lrnnK8URTIyMy1yg/379yfbJx0VFYVSiuLFi9O2bVvat29Phw4d8PDwsHWoWSMz00LkOR4eHkRFRXH69OkUq2j8/f3p1asXBQoU4PTp0yn2UOclN+7dYMlfS/AL9uPYtWOJx/vV6ceyHssYNGgQCxYk76B6L/oeBRwKYG9vb/K8tZ0+fZpBgwaxa9culFK8+eabvP/++zg7P/yiICIigjfeeIOFCxeilKJz587MnTuXcuXK2TByIXKvPLnMO77K9ySgcmau01pLX4AcSpJpkdskVPBOSK7/+usvtNYopfDw8KBDhw588803tg4zcySZFiLPKVSoEO3bt2ft2rUpzl2/fh03Nzc6duzI77//boPorE9rzZ/n/sQv2A//I/5s6r+J1h6tTSbLo34dxfaz2zn86mH69e/HD4t/sE3Q8QoXLszdu3epVq0aixYtolmzZqmO/eWXXxg2bBhXrlyhePHizJw5k5deesmK0QqRN+S5ZFop9QHwDunMQsfTScdprWWJeg4lybTI7cLCwvjkk0+YPXu2tMYSQuQYdnZ2ac6q2tnZMWDAgHy5JPja3WuULFgSe3t7mjdvztChQxPPRcVEMfr30dyPvg8/g11lO5p1a0abKm2oWrxqskKTAwYMsEq89vb2vPrqq3z88ccUKlQo3fE3b97k1VdfZfny5djZ2RETE2OFKIXIWyyRTNuszr5S6mngfxhJ8iZgLMYe7gPxxxyAEkAD4BXgBWAn0FNrfdXUPYUQIqtCQkLYvHkzmzZtYuvWrdy4cSOxyE/SZXdCCJGT5bSWT9ZSqtDDveG7du1i165dia81OvHvOQrizsXx58w/+ZM/jUNKoVAopayWTG/evJk2bdpkeHzx4sVZunQp3t7eua9VoxB5mC2b1iX8JTgLPKe1jlFK1Uo4qY2/eteBDcAGpdQrwBzgd6XU01rrBynuKIQQGXTz5k22bNmSuLQ7JCQEIHF5d7169RJbZLVo0cLG0QohhOHKlSvs2LEjS+dbtmyZ6nXhUeFcCL/AnQd3KOxUmAquFWzWGis7KlWqlKKlYWhkKHej76Z6jUaDgkKOhQi6FESD8g0sHWamEumkvL290/z/UQhhXbbsM30cqAa8pbX+Mv5YLeAfjFw6xZ5opdRPwItJrxE5jyzzFrmBg4MDWj+crfDw8EhMntu1a0eJEiVsHGE2yTJvIfKchJZ+WaGUSrE0WGvNtjPbmLN/Dj8f+5lY/XA7i72yp3vN7oxsMJLWVVpn+X1zgjgdxx8hf+AX7MfPx34mJi7tJdKe5Tzx9fKlb+2+FHEuYqUohRCWlqf2TCulIoBCwDNa603xx2oChzGWeRfQWkc/cs0LwM9AoNa6iXUjFqlRSj3aT8gBqA6STIucq1SpUrRr1y4xgc61VbtTI8m0EHlOdpdwx8XFJT4/cPkAAwIGcDgs/ZaAtdxqsaT7EjzLeWbr/XOCK3eusODgAr478B1nbp1Jc2xhp8IMrT+UL575wjrBCSEsKk/tmQYc438mbfZ3J8lzN+DSI9ck/MKPWSooIUT+cO3aNVuHYFlKwaP9ZXPxzJIQInkynB2bTm2i+4ruREZHJh4r4wIdq0FRZ7gdBRtPwdX404fDDtNyYUsCegfQoVoHs8RgK2ULl+XdFu/yTvN32HRqE37Bfqz9b22yWfkEdx7c4fq96zaIUgiRW9gymQ4DygNJN+RcBWIxCpHVJGUyndBYT9bc5CBa61pJXydd5i2EsJFSpYzZaSGESOLA5QPJEun6ZeGd5tCtBjgl2WD3IBYCjsL0XXDwCkRGR9J9RXd2DN6RJ2ao7ZQdnR7rRKfHOnEp4lLibPW52+eSjfP18rVRhEKI3MCWJR8T1hXVSDgQX1Qs4XhvE9f0j//5aJIthBBCCCHSoLVmQMCAxES6Ww3YPQR61UqeSIPxundt43zXJ4xjkdGRDPx5ILZsq5od4VHhHAk7wr6L+zgSdoTwqHAAyhcpz4SWEzg9+jS/9PuFF554ATtlRy23WjSt2NTkve48uEP7Je1ZdGhRmsXNzB2rECJnseXM9J9AR6AN8F2S4yuAuoCPUuoysBJwAQYBvTD2U/9m1UiFEEIIIXKBoKAg1qxZw7Vr16hQoQI9evTgiSeMbHjbmW2Je6Trl4Vl3lAgnU+CBRxgeQ9oOt+Yof439F+2n91O6yqtLfybmEdmiqzZ29nT+fHOdH68MxfCL3Ax/GKqhdeW/bOMLSFb2BKyhTd+f4MBTw3A18uXWqVrmRxv7lhzc0E4IfISWxYgS6jcfQeooLUOjz9eCPgXqIKROCe7DLgB1DPHhnFhGVLNWwghhDC/wMBAPvvsM9q0aWOy1/CUKVOYOnVqsmMODg7MmjWL4cOH0/Onnvgf8Qdgubcx85xRy/+FvquM5z2f7MnKniuz/HtYiyWLrDWY24Dgy8Epjjer2AxfL196PNmDgo4Fc0SsQgiDJQqQ2WyZt9b6MMasdHeSzJBrre/GH9+FkTwnffwLtJNEWgghhBD5zbp161i1apXJ7gObN29mypQpaK0pX7483t7eNGzYkOjoaEaNGsX+v/YTcDQAMIqNda+Zufd+sSaUdjGerz66OscvO950ahMtF7bMUHIKD4usbTq1Kd2xBy4fMJlIA+w6v4sBPw/A/XN33vj9DY6GHbVprEIIy7Llnmm01tu11lu01jceOX5Wa90CowhZD6AP4KW1rqu1/ssWsQohhBBC2NLu3btxdXWlQ4eUFbU/+eQTABo2bMixY8dYuXIle/fu5b333iMmJoaZX89MXDbcsVrKPdLpcbKHTtWM57E6lovhF7P1u1jSo0XWMiqhyNqBywfSHFendB1W91pNp2qdUJhebn3z/k2+CvyKJ79+klaLWvHj3z9yP+a+1WMVQliWLZd5D4h/+p/WOtAmQQiLkGXeQuQA9+7BggXJj/n4QMGMLzsUQuQsVatWxcPDgy1btiQ7fu/ePYoVK0ZMTAy///57smT7/v37uLu7U6pcKY73PA7AqIYwq3Pm33/UrzBnv/E8cGggjdwbZfl3sRStNXW+qZPhWV5Tapeuzd8j/s7QvuSQmyHMOzCP+QfnczXyappjSxYsycCnBvJ649epVLSS1WMVIr/LU8u8gUXAQqCyDWMQQoi86c4dGDUq+ePOHVtHJYTIhmvXrlGuXLkUx4ODg4mOjqZQoUK0bt062bkCBQrg5eXF5fOXE4/djsra+4cnua6IU87sUpq0yFpWJRRZywiP4h580O4Dzr95Hv+e/nSomnof7uv3rvP53s+5FHHJJrEKIczPlsn07fifJ2wYgxBCCCFErhAdHU1ERESK4wcOGEt969Wrh6OjY4rzpUuXJup+FPbKWNu98ZTRRzozHsTChlPGcwc7B9xd3TN3Ayv5Ouhr89xnf+bu42jviPeT3mzsv5GTr53k7WZv41bILcW4p8o8xdPuT9s0ViGE+dgymQ6J/1nchjEIIYQQQuQKZcqU4ciRIymO79y5E6UUDRs2NHldREQEJUqUoHvN7gBcjYSA9OtiJbP6KITGb+vtXqM7rs6umbuBFYRHhScWWcuu7BRZq1aiGh+3/5gL/3eBFT1W0NajbeI5Xy9flFI5JlYhRPbYMpkOwKjQ3cWGMQghhBBC5AqNGzfm9OnT/PTTT4nHLl26xC+//AJA+/btTV53+PBhypUrx8gGIxOPTd8F92My9r73omHGroevRzYcmfpgG7oQfiFZb+bsMEeRNSd7J3rV6sWWAVv4b9R/jG06lpfqvgTkvFiFEFljy2T6K+As8IpSqp0N4xBCCCGEyPFGjBiB1pqXX36Zl19+mf/7v/+jcePG3Lt3jwoVKtCpU6cU15w6dYrTp09Tp04dWldpTS23WgAcvAJ9/NNPqO/HGP2lD14xXtcuXZtWlVuZ+1czizsPzFsXIuJByiX1WVW9ZHVmdJiROKOfk2MVQmScLftMhwMdgGPA70qpuUqp1kqpEkpKEgohhNlFZq7zihAih2ndujVjxowhOjqaZcuW8dVXX3HhwgUcHBz45ptvsLdP2e9q0aJFALRr1w6lFEu6L8HF0WgYveY/aDofVvybcg/1g1hY/q9xfs1/xjEXRxcWd1ucYytHF3YqbNb7WbLIWm6KVQiROgdbvbFSKumfbQUMiX8knE/rcq21tlnsQgiRU2kNwcHwyyKY9Mi57t2hfkfo2RO8vCCHfh4WQqRhxowZtG7dmuXLl3P16lUqVaqEr68vDRo0MDn+0qVLdO3aNbFdlmc5TwJ6ByT2Nj54BfqsgjIuRv9pV2ejaveGUw/3SIORSAf0DsCznKc1fs0sqeBaAXtlb5bl05YuspabYhVCpM6WfabjsnG51lqn/PpV2IRS6tG+Dg5AdZA+00JY07Fj8N57cPo0FIoMY8ex0snO1y0bii7lhrMzVK0KU6dCjRo2ClYIYVMHLh9gQMCADLVmql26Nou7Lc7RiXSCnj/1xP+If/bv82RPVvZcaYaI0ngPM8X63OPPsb7fejNEJETeZok+07ac3Z1iw/cWQog8JTAQxoyBmzfh6lUoZGJJd0QEhIZDoUJw/z4MGwaffgpPP239eIUQtuVZzpN/XvmH7We3M2f/HAKOBiSbJXWwc6B7je6MbDiSVpVb5dil3Y8a2WCkWRJUaxRZM1esp26cMkM0QoissFkyrbWWZDqP0FrXSvpaKVUBOG+jcITId44dMxLpsDC4cAGcnaFsWR42IIzn4QGOUXD9Opw5AzExxnXffScz1ELkR0opWldpTesqrQmPCudi+EUiHkRQxKkI7q7uObL9VXoSiqxlZMY9NdYqsmaOWAHeaPyGeQISQmSaLat5CyGEyCatjaXdN28aiXThwlC5MhQxUYvm6FEIDzcSbRcXY/zNmzBpknEfIUT+5ersSk23mjRyb0RNt5q5MpEGUhRZyyxrFlnLbqwAhRwL0a9OP5PntNZsO7ON2DjztOASQqRks2RaKdUy/lEwE9cUSLjOkrEJIURuERxs7JG+etWYkS5fHuxS+cseE2uMO3IE7t0zCpBduQKnTsGBA9aNWwghLCWhyFpmk1RbFFnLaqwFHArw/OPPM7LBSIo4m67kvffCXtosbkO1mdX4YMcHXI64bI6QhRBJ2HJmehvwB+CRiWvck1wnhBD53k8/QVQU3L0LJUumnkg/KiIC7twxlnyfPWss9RZCiLyiQ7UO7Bi8I7Gvdnpql67NjsE76FCtg4UjSykrse7y2cW6fuv4pOMnqY7zC/YD4Ozts0zYOoFKX1bCe6U3G09tJE5npw6wECKBrZd5Z3UNTe6ogiGEEBYUGQlbtxpLte3tTS/tzohr18DPDzp0gIAAYy+1EELkdglF1rYO3EqPJ3tgr5I3gnGwc6Dnkz3ZOnArf4/426bVys0d69nbZ1n+7/Jkx2LiYlh9dDWdfujE47Me5+OdH3P1zlWz/y5C5Ce2bo2lgTpa6yMZvOZx4D8gRmvtZMn4RNYlLUAmrbGEsJzTp6FXL6OYmJOTscQ7QbHoMDb/nbw11pOlQjl+043YdLbPlSsHQ4bA0KHG/mshRN6zY8eObF3fsmXu23GXm4qsZSXWhD3SCdXZ40h/9tnRzpFuNbrh6+VLG4822Clbz7MJYTmWaI2V25Lp9sBG4LrW2s2S8Ymsk2RaCOs4fBgGDozvK10ovoJ3OuLijJnsa9eMZd5pUQr+/ReefNI88QohssfHx4fmzZvj4+OT7XvZ2dlluciWUooYWcKSo2Smb3hqHivxGMM9hzOo3iDcXORjtsh7cnWfaaVUpVROlVNKpfORDmegGjANIwHPXg8BIYTIAwrGl2+0szOS5IywszP2VpcsaRQhO3PG+Gnqe9VataBmTbOFK4TIpkWLFgGYJZlu2bJlrukdLdK26dQmuq/oTmR0ZLbuc/LGScZtHseErRP47aXfaOvR1kwRCpF3WbPPdIiJYwpjpjmzlmQzFiGEyPXKlDGS4wIFjJZXWhuzyRlVoICx17psWeN56dIQGPjwvK9v6ve7eNG4zt7e9HkhRM62bds2W4cgzODA5QNmSaSTKuBQgKfdnzbb/YTIy6y5MUI98kjteFqPKOATrfUC64UthBA5k4sLtGkDxYtDbKxRoTszIiKM60qWNPZe790Lf/0Fr75q7Jt++eXUr+3aFapWhWnT4NKl7P0eQgghMk9rzYCAAdlKpMsVLseTbsn38rxc52VcnEy36rrz4A622iIqRE5kzZnpwY+8XoixZHsicDGN6zRwH7gMHNRap7ckXAgh8o2ePWHLFmPP9PXrULhwxtpjxcUZ4wsVMvpT9+xpHK9bF2bPhi+/BIdU/gsRFGT0twZ47z2YMgW6dDFmsjt2zHh7LiGEEFm37cy2bO2RBrh85zI/vvgjjvaO+AX78dPhn/Bt4Jvq+BHrR3DwykGGew5nwFMDKF6weLbeX4jcLlcVIBO5gxQgE8J6tIbeveHIEWP/s4sLuLunndDGxRnLtCMjoUoVY2/08uUZXyI+bBjMm2f6XJUqxnkfn4wVRBNCZJydnR2DBg1iwQJZoCeg50898T/in/37PNmTlT1XAnD7/m2KFihqctz1u9dx/9ydqNgowFgO3qtWL3y9fGlSoYnswRc5Xl6r5t0q/uk+rfU9mwQhLEKSaSGs69gxI4ENC4MLF4yZ5pIljb7TST/baG0s7b5+HaKioEIFcHOD776DGjUy9l5aG0vLt29Pe5yDg7EU3NcX2rWT2WohzMHOzo7ChQtTqlSpTF+rlOLUqVOJr+2zUfBAqnnbXnhUOCWmlyBWp9PrMAPslT033r6Rbuutz/d8zlsb3zJ5rnbp2vh6+fJy3ZcpVqBYtmMSwhLyVDIt8i5JpoWwvsBAGDPGaHt19SrcvWsUB0tY9h0XZ7TCio01lnaXKWPstf70U3g6C3VmgoPBzw+WLjVmuNNSrZqR7A8ebBQ5E0JkjV02vpVSShGbpMl8du4FEJfRFgLCIo6EHaHW17XMd7+RR6jplnb7hueXPs8vJ35Jc0xBh4L0qd0HXy9fGrk3ktlqkaPk6WRaKVUE8ACKAOl+Xaq13mHxoESWSDIthG0cO2bsYT592ph5vnnT+BkXZyTUzs5GAu3sbCS4U6ZkfEY6NeHhRkLt5weHDqU91tERxo2D99/P3nsKkV/Z2dnRvHlzhgwZkqXrBw4caOaIhK3su7iPp+eZr+J24NBAGrk3SnOM1pqtZ7biF+xHwNEAouOi0xxft0xdRniN4KW6L6U76y2ENeTJZFopNQwYCdQheZXvtGittTWLp4lMkGRaCNvRGg4cgJUrYevW5P2n7e2NJdo9e4KnZ+baaGXkfffvN5Lq5cuNmXFTvv4aXnnFfO8rRH4ie6ZFAlvMTCcVGhnKokOLmBs8l1M3T6U51sXRhVcavMInHT/JbphCZIslkmmbJaRKKXtgFdAl4ZCtYhFCiLxCKfDyMh6RkRAaaiS2hQoZS6xdTHc7Mcv7NmpkPD7/HH74wUis//nn4RgXF3jpJdPXJ3yvKysChRAifRVcK2Cv7M2yZ9rBzgF3V/dMXVPapTTjmo1jTNMx/BHyB37Bfvx87Gdi4lLupY+MjkwsWiZEXmPL2d0RwAvxz69itMoKBm4AshFHCCGyycUFPDys/75Fixq9qkeONHpX+/nBihXQty+4prLSb98+GDQIhg+HgQOhRAmrhiyEELmKq7Mr3Wt2N0s17+41umd5GbadsqN91fa0r9qeK3eusODgAr478B1nbp1JNs7XK/V2W0LkZras5h0INASOAC201jdtEogwO1nmLYR41M2bcO8elC9v+ryPDyxcaDxP6Hvt6wvNmslstRAJzLnMu23btiilWLx4MRUqVKBt27YZvlYpxZYtW7Idg8ierSFbabsk4/+/pXqfgVtpXaV19gOKF6fj2HhqI37Bfqz7bx2NKzRmp89Ok2PDIsPovqI7g+sNpk/tPrg4WWj5lBDksT3TSqlwwAXop7VeYZMghFkopQ4/csgBqA6STAsh0nfrlpFk3zPRJPHJJ42kun9/o3iaEPmZOZNpOzs7lFIcPXqU6tWrZ6q696OVwYVtaK2p800dDoc9+jEs42qXrs3fI/62WNXtSxGXuHb3GnXL1DV5/pNdnzBu8zjAmG1/uc7L+DbwTXW8ENmRV5NpL631IZsEIcxCkmkhRHYsWmS0zUpLgQLQu7eRWDduLLPVIn86e/YshQsXpmTJktm+1/b4ZvFPP/00BQoUSHydUa1atcp2DCL7Dlw+QMuFLYmMTqdHoQkuji7sGLwDz3KeFogsfXE6jidmP8HJGydTnGtcoTG+Xr70qtWLQo6FbBCdyIvyWjIdDNQDOmit/7BJEMIiZJm3ECIztIYdO4y91atWwYMHaY+vU8dIql9+2difLYQQ+dmmU5vovqJ7phJqF0cXAnoH0KFaBwtGlraMLFMv6lyUAU8NwNfLl1qlzVe9XORPlkimM76mx/yWY1Twft6GMQghhLAxpaBVK6Nf9cWL8Mkn8PjjqY//5x8YNQrKlTP2Wl+5Yr1YhciNXnzxRapVq5bmmHPnznHjxo1073Xz5k3OnTtnrtCEGXSo1oEdg3dQyy1jyWbt0rXZMXiHTRNpgBaVW7C2z1qee/w5VCpNfW5H3WbWvlnU/qY2zRc05/u/vudetIk9QULYiC1npp2BvUANoKPW+k+bBCLMTmamhRDZpbXRJ9vPDwICIDra9LjCheHSJShSxLrxCZGbNGnShH379qW5z9ne3p5BgwYxf/78NO81bNgwFi5cSExMyhZIwra01mw/u505++cQcDQgWdssBzsHutfozsiGI2lVuZXF9khn1bnb55h3YB7zDszj8p3LaY4tXqA4A54awFtN3qJi0YppjhUiqTzVZ1prHaWU6gSsBjYppWYCS4FjWuv7topLCCGE7SkFbdsaj9BQo9L33Llw+nTycS+/LIm0EOagtSajEyy2mogRaVNK0bpKa1pXaU14VDgXwy8S8SCCIk5FcHd1z3L7K2uoVLQSU9tM5b1W77H++Hr8gv3YcHIDmpT/rN28f5OvAr+SdlsiR7BZMq2USvr1qALein9k5NsyrbW2ZY9sIYQQVlK6NLz9NowdC1u2GLPVa9ZATIyxdzo1779vXNuvnzGDLURut3v37ixdFxERYbYYIiIicHJyMtv9hGW4Orvi6pZzk+fUONg50K1GN7rV6EbIzRDmHZjH/IPzuRp5Ndm4lpVbUtOtpo2iFOIhWy7zjsvG5VprbW+2YIRZyTJvIYSlXbkC69fD0KGmz9+8abTbun/fSKRfeslIvOvXt26cQphTQjurzNJap9vOKr22W3FxcRw+fJh27dpRvHhx/vvvv0zHIcxryZIlVKxYkTZt2mTquvnz57Nr1y6ztFizhujYaNb+txa/YD82nd4EwI8v/ki/Ov1Mjl/x7wo0mu41uuPs4GzNUEUOl9eqeU/KzvVa6ynmikWYlyTTQghb++oreOONlMcbNTKS6t69wcXF6mEJkS0JyXSlSpUydd3ly5eJjo5OkUzb2z+cl0hIuDNi3LhxfPTRR5mKQZhfwj8Pb731FtOnT8/w/3+DBw9myZIlubJX+Kkbp1h0aBHjW46ngEOBFOfjdByPz3qc0zdP41bIjUH1BjHcaziPlXjMBtGKnCZPJdMi75JkWghhS1pDrVpw9GjqY1xdoX9/I7GuU8d6sQmRHR4eHpw7d44LFy5Qrly5DF+XWgEyO7uHTV2UUmnuhXZ0dKRChQp4e3vz/vvvy1LvHCDh/z+lFG3btmXFihWUKFEi3etyczKdno2nNtLph04pjrfzaIevly9da3TFyV7+2c2v8lprLCGEEMIiPvkEunQBu1T+KxceDnPmQN260LQpLF4Md+9aN0YhMsvLywuAgwcPmuV+cXFxiQ+tNYMGDUp2LOkjKiqKU6dOMWPGDEmkc5CnnnqK4sWLs2XLFho0aMChQ4dsHZJN+QX7mTy+JWQLvfx7UemLSvxv8/84ffO0yXFCZJYk00IIIfIUpeC552DtWjhzBiZNAnf31Mfv2QODBhljRo+GI0esFakQmePl5YXWmuDgYLPfe9KkSXTr1s3s9xWWVb9+fYKCgnjqqac4c+YMzZo144cffrB1WDbTu1ZvWlVuler5q5FX+XjXxzw28zE6/dCJgKMBRMem0ntRiAzIMcm0UqqaUuplpdQYpdR7SqlSto5JCCFE7laxIkyebCTVa9ZA585Gsm3KrVswaxZ8/bUVAxQiE5o3b85TTz3FnTt3MnXd0KFDee+999IcM2nSJF544YXshCdspEqVKuzevZu+ffty7949Bg4cyBtvvJEnl3Gnp1etXmwbtI2jrx7lzcZvUqKg6WXvGs3GUxt5ceWLVP6yMhP/mMjZW2etHK3IC2y+Z1op5Ql8CTR75FQdrfWRJONeBSYBt4EntdbyNVIOJXumhRA52dmzMG8ezJ8Ply+nPP/337KPWuQ/sbGxREZGUqhQIRwcHnYfvXfvHjNmzODQoUNUqVKFsWPHUr58eRtGKhKYqsD+xRdf8PbbbxMbG0vLli1ZuXIlbm5uya7Ly3umH3U/5j7+R/zxC/Zj57mdaY5t59GOzQM2WykyYQt5bs+0Uup5YBdGIq2SPExZAhQEqgLPWyVAIYQQeU7lyjBtmpFUr14NnTo9nK1u0iT1RPr6dVi6FKKirBerENYydepUihcvzp49exKPaa1p3bo1U6dOZc2aNcycOZMmTZpw8+ZNG0Yq0vLmm2+yceNGSpYsyfbt22nQoAFBQUG2DstmCjgU4OW6L/Pn4D/595V/Gd1oNMUKFDM5drjXcOsGJ/IEmyXTSqlywDLAGTgCPAsUSW281joCWBv/8lmLByiEELnUvXv3OHr0KIGBgQQGBnL06FHuSnWtFBwdoXt3+P13OHUK/vc/eOut1McvXmz0q3Z3hzFj4Phx68UqhKVt2bKFsmXL0qJFi8Rj69atY//+/Tz++ON8+eWXdOzYkQsXLvDdd9/ZMFKRntatWxMUFISnpyfnz5+nRYsWuaantCXVKl2Lr579iov/d5FFXRfRpEKTxHOlXUrTrUY3k9fFxsWy4eQGYuPy/ky+yDxbzky/CbgAZ4EWWusNWuvIdK7ZhjFz7WXh2IQQIlcJDQ1l/Pjx1KxZkyJFilC7dm2aNm1K06ZNqV27Nq6urtSsWZMJEyYQGhpq63BzHA8P+PBD8PY2fV5rmDvXeH79Onz2GTzxBLRtCytWwIMH1otVCEsICQmhRo0ayY6tWbMGpRQ//vgjo0ePZt26dbi5ueHv72+jKEVGVapUiV27djFw4ECioqIYNmwYI0eOJCYmxtah2Vwhx0IMrDeQ3UN28/eIv3m14auMbjQ61ZZZG09t5Jkfn8HjKw+mbp/KxfCLVo5Y5GQ22zOtlPobqAW8rrWeneR4HKB5ZM90/LkWwHbgltY6/UZ6wiZkz7QQ1rVmzRoGDBjAnTt30uwTC0Y/0iJFirBkyRIpNpQJ27ZBmzapn3dzg8GDYfhwqFbNamGJfMbHxyfL1yqlmD9/fqrnCxQogLe3Nz/++GPisRo1anD37l3OnTuXeKxbt27s3buXK1euZDkWYR6m9kybMmfOHP7v//6PmJgYGjdujKurKxs3bswXe6bNodvybqz5b03ia3tlz/PVn8fXy5eO1Tpib2dvw+hEZlhiz7RD+kMspnL8z32ZuCY8/mdhM8cihBC50sGDB+nZsycxMTG0a9eOfv360aBBAypWrEjhwsafyjt37nD+/HmCgoL48ccf+eOPP+jZsyeBgYHUq1fPtr9ALuHsbMxC//GH6fNhYTBjhvFo3x5GjIAXXjCWkgthLosWLUIple6XZkkljE8vmXZwcCAy8uECwZs3b3LixAl69eqVbFyRIkW4fft25oMXNvPqq6/y1FNP0bNnT/bu3WvrcHKVi+EXWX98fbJjsTqWNf+tYc1/a6hctDLDvYbjU9+HsoXL2ihKYUu2TKYT3jszS82Lxv/MXE8IIYTIoz766CNiYmKYO3cuQ4cONTmmWLFiFCtWjDp16jB48GDmzp3LiBEj+PDDD1m5cqWVI86dmjSBLVuMfdLffQcLFxrLvU3ZvNl4lCkDPj4wbJixjFyI7Jo2bVqmxoeFhTFv3rwM1UyoWrUqe/fuJS4uDjs7O9avX4/WmubNmycbFxoamqI6tMj5mjdvTnBwMN7e3gQGBqJS6xEokrkaeZV6ZesRfNl0b/ezt88y/o/xTNo2iReeeAFfL1/aV22Pncox3YeFhdlymfcpoArQX2u9NMnxtJZ5jwFmAH9rretZL1qRGbLMWwjrKVu2LFWqVMn0bEPjxo05c+aMLNXMoqgooxK4nx9s3572WKWMPteVKlklNCG4e/cun376KZ9//jnh4eE4OjoyfPhwZs2aleo1EyZM4MMPP+S5556jffv2TJ8+nbCwME6dOkWl+H94tdaUKVOGmjVrsj29f/CFxS1evJjHHnuMZs0e7S6buujoaLy9vfn33385ffq0BaPLW4IvBeMX7MfSf5YSGZ12iaeqxasyzHMYg+sNpkzhMlaKUGREXmuN9SdGMbGeGRmslHICfDES7W2WC0sIIXKPW7du4ZGFaU8PDw9ZqpkNzs7Qt6+xl/roUXjzTShe3PTYZs0kkRbWERsby9dff021atWYMmUKERER9OrViyNHjqSZSAOMGzeOWrVq8csvv/Dmm29y5coVxo4dm5hIA+zcuZNr166lmK0WtjFw4MBMJdIAjo6OhIWFcfbsWQtFlTd5lfdibpe5XHrrEt889w31ytZLdezpm6f535b/UfGLiuy9IMvq8zpbJtOL4n++oJTqkNbA+ER6CVANI5mWngxCCAGUL1+eoKCgTO2hjIuLY//+/ZQrV86CkeUfNWrA55/DxYuwZImRPCfl65v6tadPgxTXFeawcuVKatasyWuvvcbVq1dp27Yt+/fvZ/ny5VTLQFU8V1dX9u3bx+LFi5kxYwZbt27lww8/TDbm+vXrvP766/Tu3dtSv4YQOZqrsysjGozgwPADBA4NxKeeD4UcC5kcW7JQSbzKSQOivM5mybTWehuwAmN2ep1SarpSqlGSIVWUUk2VUmOBwxgz2Br4Vmt92OoBCyFEDtS5c2dOnz6Nj49PhvZF3rt3jyFDhhASEsLzzz9vhQjzj4IFoX9/2LkT/v0XRo82Knv36GF6fFwcdOpk7KeePBkuZHuxmciPtmzZQsOGDenbty8nT56kXr16bNiwgU2bNuHp6ZmpexUsWJD+/fszZswYWrVqleJ8t27d+OKLL6hbt665whciV1JK0ci9EfO7zufS/11i9rOzqVO6TrIxPvV8cLQ3XYXy1v1bmfoSXORcNtszDaCUcgZWAZ0xEuVUh8b/XA301lpLLf8cTPZMC2E9oaGh1KlTh2vXrlGsWDFeeOEFGjRoQKVKlXBxcQEgMjKSc+fOERQUxNq1a7l16xZubm78/ffflC5d2sa/Qd4WFwd2qXxtvWWLUfk7gZ0dPPecMZP9zDNgL91WRBoOHTrE22+/zebNm9FaU7VqVd5//3369Olj69BEDtekSRP27dsnrbHMTGvN3gt78Qv2w/+IP/+O/JcqxaqYHNtlWRdOXD/BcK/hDHxqICULlbRusPmUJfZM2zSZTgxCqWHAOIxl3KZcAD7UWn9rvahEVkkyLYR1HT9+nD59+nDo0CGAVKu0Jvy9r1+/PsuWLaN69erWClGY0KsX/PST6XOVKsHQoTBkCJQvb924RM4WEhLC+PHjWblyJXFxcZQuXZoJEyYwYsQIHBwy3qQloXe0u7s79vb2yXpJZ0QlKQSQa0kybXmRDyJxcXIxee787fNU+aoKcToOAGd7Z3o82QNfL1+aV2ouldYtKM8m0wmUUk8CDYDSgD1wHTgIHNA5KVCRJkmmhbCN3377jYCAAA4ePEhISAgRERGA0Re2SpUqeHp60r17d5599lkbRypiY6FVK9i1K+1x9vbQpYsxW92xY+qz3CJ/GD16NHPnziU6OhoXFxfGjBnDW2+9lbgKJTPs7Oyws7PjyJEjVK9eHTs7uwx/iFdKESOb/XMtSaZta9LWSUzdMdXkuSfdnmS453AGPDWA4gVTqWopsizPJ9Mib5BkWgghMubgQZg7F374Ae7cSXtslSpGz2ofHyhb1irhiRwmIeEtVKgQQ4YMyfQ2jXfffTfxeZUqVVBK8ccff+Dh4ZH4OqNCQkIy9d4i55Bk2rbaL2nPlpAtaY4p4FCAXrV64evlS5MKTWS22kwkmRa5giTTQgiROXfuwLJlRt/q4OC0xzo4wMSJ8N571olN5Bx2SZYmZObDtdYapZQkT3nMkiVLsnTd1KlTCQkJkX8ebERrzY6zO/AL9mPV0VU8iH2Q5vg6pesw3Gs4/ev2p2iBolaKMm+SZFrkCpJMCyFE1gUHG0n10qUQGWl6zNKlRp9rkb8MHjw4W9cvXLjQTJGInCAzS/OTki9Xco6wyDAW/7WYucFzOXHjRJpjCzoU5PWnX+ej9h9ZKbq8J08l00qposDr8S+/01pfTmd8OWBY/MvPtNapfMQQ1qaUerRVmQNQHSSZFsKaNm3axOrVqxP3TIeHhwNG/9iEPdMvvvgiHTp0sHGkIiPCw42k2c8P4mvLAVCqlNFGy9k55TUJ/0mXFYFC5H2ZXZr/KFmqn3Nordl6Zit+wX4EHA0gOi7a5Lj3Wr7HlDZTrBxd3pHXkumRwGzghNb6iQyMV8Ax4DFguNZ6voVDFBkkybQQtnX69Gn69evH/v37AdLsXamUolGjRixduhQPDw9rhSiyQWvYv99Iqpcvh5Ej4ZNPTI/dsAFeew2GD4dBg4zEW4iMCAsLY+vWrRw+fJjr16+jlKJEiRLUqVOHNm3aULKktO4RwhpCI0NZeHAhcw/M5fTN04nH7ZQdIa+HUKmoVNLPqryWTK/D6C/9odZ6YgavmQJMBNZqrbtZMDyRDbLMWwjrCQsLo27duly9epWiRYsm9pmuWLEihQsXBuDOnTucP3+eoKAg1q1bx61btyhXrhyHDh3Czc3Nxr+ByIzbtyE6OvUk+cUXISDAeO7kBN7eRiXwli1ltlqYdvv2bcaMGcOSJUtSrdDt6OjI4MGDmT59Oq6urlaOUIj8KU7HseX0FvyC/Vjz3xo6VevE+n7rTY49c+sMPX/qyTDPYfSr04/CToWtHG3ukNeS6fNAeeB5rfVvGbzmGeBX4JzWuooFwxPZIMm0ENYzevRoZs+eTf/+/fn666/TbZETGRnJK6+8wg8//MBrr73GV199ZaVIhaVdumT0pza1DbJGDWO2euBAKFHC+rEJ84uNjWXp0qWsXbuWoKAgwsLCAHBzc8PLy4uuXbvSt2/fNHtPh4WF0bp1a44dO5a4j7ZatWqUKlWKuLg4rl27RkhISOK5WrVqsXXrVpmlFsLKrty5wu37t3milOnFvBP+mMAHf34AQGGnwrxU5yVGNBhBvbL1rBhlzpfXkukojOXAXlrrQxm8ph5wAIjSWhe0XHQiOySZFsJ6qlatir29PcePH8/w3rm4uDiqV69OXFwcp0+fTv8CkSvMnm0s8U6LszP07GnMVjdrJrPVuVVQUBB9+vRJ3PNq6rOcUooqVaqwbNkyGjVqZPI+PXr0YPXq1ZQqVYopU6bQr18/ihZNXi341q1b/Pjjj0yZMoXr16/Ts2dPli9fbv5fSgiRJdGx0VT6shJX7lxJca5h+Yb4evnSp3YfXJwy348+r8lryfRtoDDQQmu9O4PXNAV2Ane11rJ+IYeSZFoI6ylYsCDdunVj2bJlmbqub9++/Pzzz9y7d89CkQlr0xp27TL2Vv/0E0RFpT3+ySeNpLp/fyhe3DoxiuzbvXs37du35/79+zg5OdGxY0caNmxImTJl0FoTGhrKvn372LhxI9HR0Tg7O7Np0yaaN2+e7D5Hjx6lVq1alC1blsDAwKQfME06d+4cTz/9NKGhoRw5coQnnki33I0QwgrWHFtDtxXd0hzj6uzKy3VexreBL3XL1LVOYDmQJZJpu/SHWExC9e4GmbgmYWzKr16EECIfKlq0aJYqsp45cybFDJTI3ZSC5s3h++/h4kX4/HNIK985cgRefx3KlzeKlV27ZrVQRRZFRkbi7e3N/fv36dmzJ+fOnWPt2rVMnDiR4cOH4+vry8SJE1m3bh3nzp2jR48eREVF0atXLyIf6bO2dOlSlFJ8/vnn6SbSAJUqVeLzzz9Ha53pL++EEJbzfPXn+aXfL3Sp3gU7ZTq1C48K5+ugr3nq26doMr8Jiw4t4m70XStHmjfZMpn+E1DASKWUY3qD48eMBDTG7LQQQuR7LVq0YP/+/cyfn/EGB/PmzSMwMJAWLVpYMDJhSyVLwptvwtGjsG2b0ZPaycn02Pv34bffQOpK5Xx+fn5cvXqV/v37s2LFCkqXLp3q2DJlyrBy5Upefvllrl69ip+fX7Lz+/fvp3DhwvTq1SvD79+rVy+KFClCYGBgln8HIYR52dvZ0/nxzqztu5Yzr59hUqtJuBdxT3X83gt7GbxmMO6fuzP6t9FcirhkxWjzHlsu805Ysq2B1cBArbXJr0iUUoWAJcCL8ePbaq23WytWkTmyzFsI6zlw4ACNGzcmNjaWDh060LdvXxo0aEClSpUSi5FFRkZy7tw5goKCWLp0KZs3b8be3p7AwEDq169v499AWMu1a7BoEcydCydOJD/39tvw8cc2CUtkQuvWrdm/fz+XLl3K8MqSW7duUb58eRo1asS2bdsSj1epUgUPDw+2bt2aqRjatGlDSEgIZ86cydR1QgjriYmL4dcTvzI3eC6/nvgVjel8z17Zc/aNs7i7pp585yV5as80gFJqKdAHI0G+AHyHMWOdsAS8HNASGAokZGT+WuveVg5VZIIk00JYl7+/P4MGDeLu3bvpFiHTWlOoUCEWLVpEjx49rBShyEm0hq1bjb3VAQFGq62TJ6FaNdPjx42DqlWhXz+Zvba1MmXK8NRTT7Fx48ZMXdexY0f++usvrl69mnisWLFidOrUiRUrVmTqXn369OH333/n1q1bmbpOCGEb526fY96Becw7MI/Ldy4nO9f1ia783Odn2wRmA3ltzzSAD7AZY7l3BWAK8AdwNP7xBzAZqBg/ZjMw0BaBCiFETtWjRw9OnDjBmDFjqFatGlprk49q1aoxduxYTpw4IYl0PqYUtG0LK1bAhQuwdGnqifSFC/DZZ/DKK8be6uHDITjYuvGKh27dupXm0u7UlC5dOkXyGxERkW4rPVMKFizInTt3Mn2dEMI2KhWtxNQ2Uzn7xllW91pNp2qdUBhfvA/3Gp7qdfMPzOfHv3/kfsx9a4WaK6XefNAKtNb3lVKdgNeAMTycfX7UeeATYI625VS6EELkUOXKlWPGjBnMmDGDO3fucObMGSIiIgAoUqQIlStXpkiRIjaOUuQ0pUsb+6lTM38+xMUZzyMj4bvvjIeXl1EJvG9fKCy9NaymePHiyWaXM+rq1asUK1Ys2bHsfJySj2JC5D6O9o50r9md7jW7E3IzhKX/LKVTtU4mxz6IfcC7f7xLaGQor//+OoPqDWK413Cql6xu5ahzPpsu805KGWsT6wH1gVLxh69h9JX+S5Lo3EOWeQshRO4XEwMeHsbsdGqKFIGXXjIS63r1rBZavtWmTRsCAwO5ePEixTPYz+zGjRtUqFCBp59+Otn+aDs7O5555hneeeedTMXw0UcfsXHjRmJjYzN1nRAi91h5eCW9/VPuqm1TpQ2+Xr50q9ENZwdnG0SWPZZY5m3Tmemk4pPlg/EPIYQQQtiQnZ0xC+3nB+vWgancKSICvv3WeDRqZCTVvXtDFlYPiwzo0qUL27dvZ/To0Xz//fcZuua1114jKiqKF154IcW5DRs2sGHDBnOHKYTI5fyC/Uwe33pmK1vPbMWtkFvibPVjJR6zcnQ5S46ZmRZ5h8xMCyFE3nLpkrHk+7vv4Pz5tMe6ukL//jBiBNSubZ348ou7d+9SrVo1QkND8fb2Zvbs2anuob569SqjRo1i1apVlClThlOnTlGoUKHE83Z2WS+bo5SSmWkh8rCVh1fybdC3bD2TfrX/dh7t8PXypWuNrjjZp9KDMYfIc9W8k1JKFQE8gCKAfXrjtdY7LB6UyBJJpoWwrpiYGD7++GOWLFnC+fPnKVeuHD169OB///tfqktBBw8ezPfff09MTIyVoxW5WWws/P67MVv9yy8P91Ob8u678MEH1ostv9i1axft27fnwYMHODo60rFjRxo1akSZMmUAI4kODAxk06ZNREdH4+joyObNm2nevLmNIxdC5DbHrx/nu+DvWHhoIdfvXU9zbBmXMgyuN5hhXsOoWryqlSLMnDyZTCulhgEjgTpA2j1dHtJa6xyzRF0kJ8m0ENb1wgsv8MsvvyQrCqSUwt3dnZUrV9K4ceMU1wwePJglS5bI7JLIsvPnjdnqefPg4sXk55SC06ehShWbhJbnBQYG0qdPH86ePQuQoiVewt+CypUrs2zZMpN/A4QQIqOiYqJYfXQ1fsF+bD+7Pc2xL9Z8kVW9VlkpsszJU62xlFL2SqmfgW+BuvGxqEw8hBAi31u6dCnr16+nUKFCTJs2jfXr1/PFF19QpUoVLly4QLt27di0aZOtwxR5UMWKMHkynDkDa9ZA585GEg3QqVPqifSFC/DDD3Bfuq1k2dNPP83x48dZtGgR3bp1o0KFCjg7O+Ps7Iy7uztdu3ZlwYIFHD9+XBJpIUS2OTs407dOX7YN2sbRV4/yZuM3KV7A9Mo3Xy9fK0dnWzabmVZKvQrMin95FVgIBAM3gDQWjhm01ml/LSJsRmamhbCejh07smXLFrZt20aLFi0Sj9+7d49XXnmFJUuWUKBAAVavXs0zzzyTeF5mpoUlnD1rzFY3bw4dO5oe8957MG0alCgBAwcavatr1LBunEIIIbLnXvQ9/I/44xfsx67zuwDwKObBydEnsVM2m69NU55a5q2UCgQaAkeAFlrrmzYJRJidJNNCWI+bmxvVqlVj7969Js9PmzaNSZMm4ezszOrVq3n22WcBSaaFbcTEQOXKRkGzpFq2NCqBe3uDc+7rtiKEEPna4dDD+AX7Ub1kdUY1GmXrcFKVp5Z5AzUBDUyTRFoIIbLm9u3bVK2aeqGPiRMn8umnnxIVFcWLL77Ib7/9ZsXohEhu/fqUiTTAjh1Gv+oKFWDsWDhxwvqxCSGEyJpapWsx89mZDxPpsDBj30/SR1iYbYO0kJxQxOs/WwcghBC5laurKzdvpv195P/93//h6OjI66+/jre3N/7+/laKTojkSpaE9u1h82bT569dg08/NR5t2xqz1d26gVPO7rZiNT4+Plm+VinF/PnzzRiNEEIIWy7zDgbqAR201n/YJAhhEbLMWwjradGiBceOHSM0NDRFRd9HzZkzh9deew1nZ2eqVq3KsWPHZJm3sImTJ42e1QsXpj9ZUbo0DB4Mw4ZBtWrWiS+nsrOzQylFZj67JYyX3tBCCKsJCzP+eCcVGgpubraJJ15e2zM9FpgOfKm1/j+bBCEsQpJpIaznvffe44MPPuD333+nQ4cO6Y7/9ttvefXVVxNfy4drYUsPHkBAgNG3euvWtMfa28Plyzb/LGZTH2SycXdYWBjz5s3j7t27kkwLIaznwQPYvTv5saZNbb7MKK8l087AXqAG0FFr/adNAhFmJ8m0ENazZ88emjVrlqkWWN999x0jRowAJJkWOcfx4zB3LixaBNevpzz//POwbp3Vw8qV7t69y6effsrnn39OeHg4jo6ODB8+nFmzZiWOGTVqFD169KBly5bY2eXMyrtCCGFOeSqZBlBKlQZWAw2AmcBS4JjWWrpP5mKSTAthPVprTp8+jVIqzUJkj/rrr7+4desWrVq1smB0QmTe/fuwerUxW71jx8Pj69YZCbUpR4/C44+DQ06oBGNDsbGx+Pn5MW3aNEJDQwHo2bMnH3zwAdUeWSOfsGS8ZMmSdO3aFW9vb9q3b49Dfv8fUQiRZ+WpZFoplXQ6RGFU9s4orbWWv/Y5lCTTQgghzOHoUWO2ets2CAoylno/KjoaKlUyisUOGQJDhxrtt/KblStXMmHCBE6dOoXWmnbt2jF9+nQ8PT1Njt+2bRv+/v78/PPPXLp0CaUUrq6udOnShRdffJFnnnmGAgUKWPm3EEIIy8lryXRcNi7XWmsT/0kVOYEk00IIIcxJayNZNmXVKujR4+FrpeDZZ41K4J075/3Z6i1btvDOO+9w4MABtNbUr1+fjz/+OEM1FBLs2bOHVatWERAQQEhICEopChUqxLPPPou3tzfPPfcchQsXtuBvIYQQlpfXkulJ2bleaz3FXLEI85JkWoicZfDgwXz//ffExMTYOhQhzK5jR0itXIC7uzFTPXSo0cM6Lzl06BBvv/02mzdvRmtN1apVef/99+nTp0+27nvw4EH8/f0JCAjg2LFjKKVwcnKiQ4cOeHt788ILL1C8eHEz/RZCCGE9eSqZFnmXJNNC5CyDBw9myZIlUmxM5DlRUdCuHezalfY4Ozt47jljtvqZZ0wvF88tQkJCGD9+PCtXriQuLo7SpUszYcIERowYYfb9zkePHsXf359Vq1bx999/o5TCwcGBVq1a4e3tjbe3N6VKlTLrewoh8oC4uJSVJEuWNP4Y25Alkmkp3yiEEEKIXMnZGXbuhL/+gpEjwdXV9Li4uIcFzKpWhWnT4NIl68ZqDqNHj6ZmzZqsWLGCQoUKMXnyZE6dOsWoUaMsUjisZs2aTJw4kUOHDnHq1Ck+/vhj6tevz5YtWxg5ciRff/212d9TCJEHXL9u9JlO+jDVpiEPkJlpYXYyMy1EziIz0yK/iIyE5cuNSuD796c91t4ePvgA3n7bOrGZQ0IF7kKFCjFkyBBKly6dqevfffdds8Rx8eJFAgICKFu2LD2SblgXQgiAsDAjgU4qNBTc3GwTT7w8v8xbKVUGqA2UiD90A/hXa33VdlGJzJJkWoicRZJpkR8dPGgk1T/+CHfumB7z669GsbLcImk/aJVaRTYTtNYopdL8G3DmzBmqVKmSnfCEEMKQj5Jpm9e4VMZ/DYYDo4AnUxlzBJgFfKdzUvYvhBC5QMmSJalUqZKtwxDCqurXh2+/hU8+gWXLjMT6wIGH5ytXNoqXmRIba1QFt/H2vhQGDhxosXtXrVqVatWq0a5dO9q3b0+7du2k0JgQQqTDpjPTSqniwFqgacKhVIYmBLkb6KK1vmXh0EQ2yMy0EEKInCgoyEiqly2D//0Pxo83PW7lSnj3XRg2DAYPTjnBkhdVrVqVM2fOAMast1KKevXq0b59e9q3b0+LFi1wdna2bZBCiNwhH81M27I1lgK2A83jD10HVgKBwJX4Y2WBRkAvoBRGUr1Ta93KutGKzJBkWgghRE4WHm70ri5a1PT5du3gjz+M546O0L27UQm8TZvU+13nBSEhIWzevJlNmzaxdetWrscXDFJK4ezsTNOmTROT6wYNGtg4WiFEjiXJtOUppV4CvsdIkJcCI7XWEamMLQzMAfrHj39Za73MWrGKzJFkWgjbi4uL48aNGwCUKFEi2V5LIUTqjh+HJ54wfe7xx2H4cBg0CPJDR6iDBw+yadMmtmzZws6dO7l//z5gJNfSt14Ikap8lEzb8tNVv/if27XW/VNLpAG01ne01gMxZrIV8LI1AhRCiNzk5s2bTJs2jYYNG+Ls7EyZMmUoU6YMzs7ONGjQgGnTpiXONAkhTAsISP3ciRMwdiy4u0O/frB9uzHDbS0+Pj4sWLDA5Lm1a9dy6NAhk+cmTZqEl5dXpt+vfv36jB49mrfeegsfHx+cnZ3RWiPla4QQwmDLZNoTY5Z5diaumRX/s775w8nblFINlVK/KqVuKaUilVJ7lVK9bB2XEMI81q5dS7Vq1Zg8eTLBwcHExsYmfuiNjY3lwIEDTJ48mccee4yff/7Z1uEKkWONGwe7d8PAgVCggOkxDx4Y+65bt4Ynn4QvvoD4hSAWtWjRInbu3GnyXLdu3Zg5c6bJc+fOnUs10X6U1pr9+/fz0UcfJRYhe/bZZ5kzZw4FChSge/fuzJ6dmY9uQgiRd9mymndC+6uQTFyTMLZEmqNEMkqpNsAG4D6wHIgAvIEVSqmKWuvPbBmfECJ7AgIC6NWrF7GxsZQuXZpevXrRsGFDypQpg9aa0NBQ9u3bx8qVKwkLC6NHjx6sXLmSF1980dahC5HjKAVNmhiPL76A7783ipYdOWJ6/LFj8H//ZxQ069kTZs9OfS92Tvbtt9+yefNmtm7dyq1bt9Bam9wnnZmWXEIIkdfZMpm+DZQEygMHM3hNufif4RaJKA9SSjkA3wFxQEut9aH441OBfcCHSil/rfVZ20UphMiq69evM3jwYGJjYxk7dixTp041WXG3f//+fPrpp0yYMIHPPvsMHx8fWrVqRcmSJW0QtRC5Q/HiMHo0vPYa7NplJNU//QRRUSnHRkUZM9pFilg/TnMYOXIkSilq1KjB0KFDEyt4F0htel4IIYRNl3n/G/9zcCauSRj7b5qjRFJtgWrA0oREGkBrfRv4EHACLNe4UghhUXPmzCE8PJyxY8cyffr0NFvXODs788knnzBmzBjCw8OZM2eOFSMVIvdSCpo3N2apL16Ezz83XaRs2LCc15s6M7TWnD59mv379xMUFMThw4dtHZIQQuRotvyT749RTKy7UmqySmfdkFJqIsbSZA38ZIX4sk0pVVop9bxSaqpS6jel1DWllI5/LMrkvSorpT5TSh2L3/N8Qym1Xyk1VilVKI1LW8f/3Gji3Ib4n9JqTIhc6tdff8XV1ZWpU6dm+JqpU6fi6urKL7/8YsHIhMibSpaEN9+Eo0dh2zbo2xecnMDBwehJnRpfX5gzB27ftlqomRIYGMgHH3xA06ZN2bNnD+PHj6dRo0aUKlWKXr16MXfuXEJCMrMzT2RHeFQ4R8KOsO/iPo6EHSE8ShZlCpET2XKZ93fAa8ATwETgxfgEMxAIxUiaywBPY8yc1o6/7lj8tbnBVXPcRCnVBfgBcE1yuBDQIP4xVCn1nNb6pInLH4//eeLRE1rrK0qpO0nGCCFymZMnT9KsWbM0Z6QfVaBAAZo1a0ZgYKAFIxMib1MKWrUyHmFhsGcPlCljeuzRozB3rvF83Djo08dIrhs2zDl9qxs2bEjDhg353//+x/3799mxYwebN29m8+bNrFq1Cn9/f5RSeHh40KFDB7755htbh5znaK3ZdmYbc/bP4edjPxOrYxPP2St7utfszsgGI2ldpbXsXRcih7DZzLTWOhp4FqOomAJqAZ8AOzAS5v/in3+CkUgr4DTwrNY6NzY3PIfp2eE0KaXqAyswEuk7wHigKdCOh18qVAd+UUqZ2qmVUAYlte/Cw5OMEULkMhERERQvXjzT1xUrVow7d+5YICIh8h83N3jhhdTPJyTSAHfvwoIF8PTT4OkJ334LEak2B7WNAgUK0LFjR2bMmMGBAwe4cuUKY8aMwdnZmdOnTzM36S8kzOLA5QPU+aYObZe0ZdXRVckSaYBYHYv/EX/aLmlLnW/qcODyARtFKoRIypYz02itzyil6gKTgSFAsVSG3gLmAVO11rnp099UYD+wX2t9VSlVhcxVLwf4CigIxAAdtdZ7kpz7Qyl1ApiBkVC/hfG/pRAinyhZsiTnzp3L9HXnz5+nRAlpjCCEpd27B4sXmz536BC88gqMGWP0rfb1hfTaQe/cuRMfH59MnUutnVZaQkJC2Lx5M5s2bWLr1q3cuHEjsb90ZlbCiPRtOrWJ7iu6ExkdmXisjAt0rAZFneF2FGw8BVfjTx8OO0zLhS0J6B1Ah2odbBS1EGlwdYWVK1Mey4NUwh9GW1NKOQFeGLPQCZ/wbmAUGwvWWj+wVWzm8kgyvVhrPSid8Y0wlr0D+GmtR5gYY4fxv1FNjC8dSsfP+iec/wnoATTQWgebuD4CuKm1rpTZ3yeNuCsA58H4wF6hQgVz3VoI8Yhnn32WLVu2EBISgru7e4auuXDhAlWrVqVdu3b89ttvFo5QiPwtLg62bDEqga9ZAzHprK3z8jKS6r59oXDh5Ofs7OxQSpGZz24J45VSxMbGpjru5s2bbNmyJXFpd8L+6IRr69Wrl9giS6p8m8+BywdoubBlYiJdvyy80xy61QAn+4fjHsRCwFGYvgsOXjGOuTi6sGPwDjzLedogciFynwsXLlCxYsWElxW11heye0+bzkwnFZ8s74l/CEO3JM8XmhqgtY5TSi0BPsKY2W9D8uXkCXulHweSJdNKqbJAYYwWWUKIXOjFF19kw4YNDBkyhHXr1uHo6Jjm+OjoaHx8fIiNjcXb29tKUQqRf9nZQYcOxuPyZVi4EL77Ds6cMT0+OBiGD4e33oKXXoJXX4Xa8VVjBg60XPMNNzc3tNaJibqHh0di8tyuXTtZyWIBWmsGBAxITKS71YBl3lDAxKdzJ3voXRu61oA+/rDmP4iMjmTgzwP5e8TfsodaCBvJMTPT+UEWZqZ3AC2ASKBYanvFlVJNgN3xL6dqrSclOdcJ+B1YqLX2eeS6gcAiYJLWOuOlgNMhM9NCWE9MTAxPPvkkp06dokmTJsyePZt69eqZHHvw4EFeffVVAgMDqVatGkeOHMHBIcd8pypEvhEXBxs3GrPV69ZBGhPGzJgBY8daPqZSpUrRrl27xATaw8PD8m+az20N2UrbJW0BY0Z69xDTifSj7sdA0/kPZ6i3DtxK6yqtLReoEHlEnp6ZFibVjP95Mp2ia8dMXJNgC0bhtn5KqZkJvaaVUkWBd4EHwBLzhCuEsDYHBwfWrFlD8+bN2b17N15eXtSqVYtGjRpRJr608NWrVwkMDOTIkSNorSlWrBhr1qyRRFoIG7Gzg2eeMR4XLxoFyb77Ds6fTz7OyQkGDbJOTNeuXbPOG4lEXwd9nfj87WYZS6TBGDeuGfRdFX+f/V9LMi2EjVhtZlop9SzwQfzLT7XWSzNxbT9gTPzLcVrrzeaOzxoyMzOtlCoA3It/+YvW+vl07n0HcAH2aq2bPHKuDUZP6fvAciACo2d3ZWCM1vqzTP4e6U01l8UovCYz00JYSUhICP3792f3bmORyqNL/hL+1jdu3JgffviBqlWrWj1GIUTqYmPh99+N2epffjFmr/v0gWXLHo6Jjo5O3Mpx/LjRjqtXLyhYMP3779u3j0aNGlkoepFZ4VHhlJheglgdSxkXOPdm8j3S6XkQCxW/gNBIo23Wjbdv4OqcNws8CWEulpiZtkprLGV8qvsCeAoIy0wiHW8ZcA2oB2Qq8cvFkra5ykgF84QSkIUfPaG13go0B3YBvYFXMHpg98lsIh3vfDqP/Vm4pxAiGzw8PNi5cyfbtm3jjTfeoHnz5jzxxBM88cQTNGvWjNdff50//viD3bt3SyItRA5kbw/PPQdr1xr7qSdNgtGjk4/x9PTk0KFDAMyebcxaly8Pr78OR46Yvu+DBw94++23adasmSXDF5l0IfxCYvurjtUyl0iDMb5TNeN5rI7lYvhFM0cohMgIa63xa4vRuikWeDOzF2uttVLqDeAvoLZSqpXWert5Q8xxkpbJzEgl86j4nya/n9Za78Po6y2EyEOSzlQBtGzZkpYtW2boWpmpEiJnqlgRJk9Oefzw4cM8/fTTjBs3nsWLxwP23LoFM2caj+bNjUrgPXpAgQKwf/9+Bg0axLFjx3BycrLybyHScufBw3mSolnsNOaa5LqIBzmsWbnI38LCoHTp5MdCQ8HNzTbxWJBVZqYxlhQDbNJap/Ldadrir9sQ/7KHWaLK2e4neZ6R/wIm/Em9l+Yo86iYzqOhFWIQQpB8piqjZKZKiNxp0qRJaK354IMphIc3AY4mO79zJ/TvD+XLR9Oo0bs0a9aMo0ePUr9+fYKCgmwTtDCpsNPDhYS3o9IYmIbwJNcVcSqS+kAhhMVYK5luBGhgXTbvsx5QQONsR5TzJf2KMcXSbRNc4n9mZEl4tmitL6T1AK5YOgYhhCFhpmrq1Klp9pBNsH//furXr8+nn34qBciEyGUmTZrE3r17qVy5JhAEeAKfYHzEShDMzZue7N8/nehoReXKU3nzzUAee6yWTWIWplVwrYC9MtZ2bzxl7IHOjAexsOGU8dzBzgF3V3czRyiEyAhrJdOV43/+l837HI//WSWb98nxtNb3gevxL9Os4KWUKs7DZPp8WmOFEHlLwkzVlClTaNKkCUePHjU5Ljo6mnfflZkqIXI7T09P/vvvAGPHjsHePhql3sHRsSVwGJgANIl/Xg8I4syZCbz8sj0VKhgttk6csGHwIpGrsyvda3YH4GokBJj+052q1UeN4mMA3Wt0l+JjQtiItZLpovE/b2TzPgnX55e/GAlL4h9TSqU1hVQjyfNM/jkWQuRmCTNVNWvWJCgoCE9PTz755BOSdmoIDg7G09OT6dOno5Ri6tSpBAYGUquWzFQJkRs5OTkxY8YMduzYweOPP0Zs7G6Uqgt8hLGAbzIQCNRJvObaNfj0U6hbF8LDbRK2eMTIBiMTn0/fZfSPzoh70TBjV5L7NByZ+mAhhEVZK5lO+LNdLJv3Sbg+v1RZ2Bn/0wXwSmNcqyTPd6U6SgiRJ3l6enLgwAHGjBlDdHQ077zzDi1btuTw4cNMmDCBJk2acPjwYerVq0dQUBATJkzA3j6TpWOFEDlO48aN8fb2jv/yTGNnBwMGjGDcuPdwczP9Hby3N7jmlymJHK51ldbUcjO+1Dx4Bfr4p59Q348x+ksfjN9QV7t0bVpVbpX2RUIIi7FWMh0W//PJbN6nZvzP0GzeJ7f4OcnzwaYGKKXsgAHxL28BWy0bkhAiJ0o6U/XYY4+xe/du6taty0cffYRSismTJxMYGEidOnXSv5kQIsc7duwYTZo0Yfr06djb2/PMM88A8MMPszl0qBN79lxg+XJo0yb5db6+qd/z0CGIjrZczCI5pRRLui/BxdHYqbfmP2g6H1b8m3IP9YNYWP6vcX5N/KZJF0cXFndbjNGBVghhC9ZKpvdhrDvqks37dMWospEv+hjHt7P6M/7lEKVUExPD3uLhlwxfaa2t/p9BpdThpA9gi7VjEEIYks5UJSz1HjFiBO+9954UHBMij/jss8/w9PRk//791KhRgz179vDrr7+yceNGKlSowKZNm2jQoA737i3ijz/gv/9gzBho2dJon2VKZCS0amW05Xr3XQgJse7vlF95lvMkoHdAYkJ98Ar0WQWVvoABATDqV+NnxS+Sz0i7OLoQ0DsAz3KeNoxeCKGS7quz2Jso1QdYipEIt9Ja70znElP3aAlsi7/HS1rr5WYN0gKUUs2Bx5IcKoVRdhOM5djzko7XWi8ycY/68WMLYlTq/hBj9rkg0AcYHj/0ONBAa231JfDxCXRSDhh9xTl//jwVKqRZP00IYSbHjh1j4MCBBAUFYWdnR4cOHdiwwego2L59e+bPny//PgqRi50+fZpBgwaxa9culFK8+eabvP/++zg7P2w4HBERwRtvvMHChQtRStG5c2fmzp1LuXLl0rz3/PkwdOjD10pBx47GTHaXLiDfxVnWgcsHGBAwgMNhj36kSql26dos7rZYEmmRc+XQPtMXLlygYsWKCS8rxnchyhZrJdOOGJW8qwBXgZZa6wzXk1RKVQd2AG7AGeAJrXUGyzTYjlJqETAwo+O11ibX6SilugA/kHrhtePAc1rrk5mN0RKUUhWIryouybQQ1vHZZ58xceJE7t+/T82aNVm8eDENGjRgy5Yt+Pj4cP78eYoWLcoXX3zBoEGDbB2uECILChcuzN27d6lWrRqLFi1Ks1f8L7/8wrBhw7hy5QrFixdn5syZvPTSS6mOb9QI9qey7q9cORgyBIYNg0qVsvtb5E0+Pj40b94cHx+fLN9Da832s9uZs38OAUcDiNUP13o72DnQvUZ3RjYcSavKrWRpt8jZJJk2P6XUi4A/xsxyJDARmKe1jkzjmsLAUGAqRq9lDXhrrX+2eMBmYK5kOv5elYHXgecwWmU9AE4CPwGztdZ3sxWsGUkyLYT1WHKmSgiRs9jb2/Pqq6/y8ccfU6hQoXTH37x5k1dffZXly5djZ2dHTIzpeYiICHj2WdiVTglTpaBzZ2O2+tlnZbY6KTs7OwYNGsSCBQvMcr/wqHAuhl8k4kEERZyK4O7qLu2vRO4hybRlKKUmAlMwkmIwkuo/gWCMomKRGJWrywCeQIv41wlJ5nta6/etFrDIEkmmhbAeS85UCSFylq1bt9Lm0YpiGbBq1SpeeeUVQkPTrt/6778wdy4sWQK3b6d9zwoVjGXhQ4YYz/M7cyfTQuRqkkxbjlJqMDALSPhKNa0AEpLou8AoU3uKRc4jybQQ1mOpmSohRN4SFhaGWwY/yN69CytXgp8f7N2b9lg7O/j8c3j9dTMEmYtJMi1EEvkombZWNe9EWuuFGMWpPgeuYSTMqT2uAZ8B1SWRFkKIlDZv3szMmTMzlEgDFC9enKVLl/LTTz9RokQJC0cnhMgpMppIAxQqBIMGwZ498NdfMHJk6r2p4+Lg6afNE6MQQuQ2Vp+ZThGAUrWAp4CSQBEgArgO/KW1Tr+kochxZGZaiNwhMzNVQoj8LTISli83ZquTFiqrW9foT22qHlZ0NNjbG7PXeZ3MTAuRRD6ambZ56Yj4hFmSZiGEyIIlS5bw2GOP0bRp0xTnwsPDcXJyokCBAinOLVu2jP379/P5559bI0whRC7n4mLsjx4yBA4eNJLqH380ipGlVlh64UL46COjCriPD5Qta92Yrc3f359t27Zl+jqlFKdOnTJ/QELYSuHCMHt2ymN5kM1npkXuJ32mhbCdtGZD7O3tGTRoEPPnz09xbvDgwSxZsoTY2NgU54QQIiMiIoyZ59R2mXh5wYEDxnMHB+ja1Ui+27XLe7PVdtn4hZRSaf4t3rFjR5bvDdCyZctsXS9EXpEnZ6aFEEJYhtYa+cJUCGEpRYqkfi4o6GEiDRATA6tWGY9q1YzZ6sGDU64Ezc2aN2/OkCFDzH7f1q1bZ7mvtFJKCk0KYUGSTIts01rXSvo66Z5pIYQQQuQ/69enfu7UKXjnHZg4Ebp3N2ar27RJfbl4bvHYY48xcOBAs9+3ZcuWWU6mhRCWJcm0EEIIIYQwq0mToHNnY2/1smVw717KMdHRRguulSvh8cdh+HCjinipUlYPN0fLyj5sIYR15LEdK0IIIYQQwtaUgkaNYP58uHQJZs2C2rVTH3/iBIwdC+7u0K+f0etaCCFyOkmmhRBCCCGExRQrBqNGwd9/w65dMGAAmGgyAMCDB3DsGBQsaNUQhRAiSySZFkIIIYQQFqcUNG0KixfDxYvw5ZdQs2bKcWm12xJC5ALXrhk9pZM+rl2zdVQWIXumhRAilzt58iRLlizJ1LmTJ09aOiwhhEhViRLw+uswejTs3Gnsrfb3B0dHY5m3KVpD375GQt6/PxQvbt2Y0xISEkJhC/XRtbe3z/K1Us1b2ITWKZPnPNpdRPpMC7NLWs1b+kwLYVl2dnZZqvKqtU63t6kQQljT9etw8CC0b2/6fGAgNG5sPC9QAHr3NmaxGzfO2zPZ2elhDRAXF2emSITIoLCwlH3vQkONGWobkj7TIkdSSh1+5JD8cyWElVSqVElapggh8oSSJVNPpMGYvU5w/76xXHzxYqhTx0iqX34Ziha1fJwZde7cOT766CM2b97MxYsXiYqKMjkuvdljSYaFyLlyzMy0UqoI4AEUAdJdz6K13mHxoESGpJJMVweZmRZCCCFE9t2+DeXKmW6xlaBgQejTx0isGzWy7Wz1sWPHaNasGbdu3SIjn7UlYRZ5isxMW49SahgwEqgDZPTPniYHxC4MWutaSV8nXeYthBBCCJFdrq6wfr0xOx0QYPSoftS9e7BwofGoV89Iqvv1M661tvHjx3Pz5k06derElClTqFmzJkWKFLF+IEIIi7LZzLRSyh5YBXRJOJSJy7XWOuvVGIRFyZ5pIYQQQljK1atGwvzdd3D6dNpje/aElSutE1dSpUqVonDhwhw/fhwnJyfrByCELcnMtFWMAF6If34VWAgEAzcAWesihBBCCCFSKFMG3nkHxo2DzZuN2eo1a8BUPcXBg60fH8Ddu3dp27atWRLptm3bopRi8eLFVKhQgbZt22b4WqUUW7ZsyXYMQgjTbJlMD4j/eQRoobW+acNYhBBCCCFELmJnBx07Go/Ll2HBAmO2OvJsGGHEz4p1jh9s5VmxqlWrEhkZaZZ7bdu2DaUUd+/eTXydUVKgUgjLsmUyXRNj7/M0SaSFEEIIIURWlSsH48cbM9bbfgL62jae/v378/777xMWFoZbNpP4rVu3Akb3hqSvhRC2Z8s90+GAC+CltT5kkyCERcieaSGEEELYTA7YrxkTE0Pnzp25ceMGixYtonbt2lZ7byFsLgf8O2hKXtszfQKoB5SwYQxCCCGEEEKYVceOHYmOjubAgQPUq1ePSpUqUalSJezs7FKMzey+5nPnzlG4cGFKlEj7I/TNmzeJiIhInNEWQpifLZPp5UB94HngDxvGIYQQQgghhNkk3dccFxfHmTNnOHPmjMmxmd3X7OHhwaBBg5g/f36a48aNG8fChQuJiYnJ1P2FEBlny2R6JtAPeEUpFaC1/tOGsQghhBBCiLzA0RFatUp5zIosua9Za01Gt2naajunEPmFzZJprXWUUqoTsBrYpJSaCSwFjmmt79sqLiGEEEIIkYsVKwaZqHhtCa0eTeZtICIiQnpcC2FhNkumlVJJuwEq4K34R0aWu2ittS1n1UUSSqnDjxyS/2+EEEIIIWwgLi6Ow4cP88cff8h+aWEbhQrBpEkpj+VBtkx6Hs2YpRGeEEIIIYQQj7C3t0/2evHixSxevDjd64YMGWKpkIRInYsLTJ5s6yiswpbJ9BQbvrcwI611raSvk7bGEkIIIYTI63x8fLJ8rVIq3WJiSfc+K6XS3Avt6OhIhQoV8Pb2ZsoU+bgthCXZrM+0yLukz7QQQggh8hM7O7t0k9xHJYxXShEbG5v+BUnea9CgQSxYsCAroQqRb+W1PtNCCCGEEELketOmTcvU+LCwMObNm8fdu3cz/V6TJk2ifv36mb5OCGF+uTKZVkp5aa2DbR2HEEIIIYTIYSIi4J13kh/7+GMoUsRibzl+/PgMjbt79y6ffvopixYt4u7duzg6OjJ8+PBMvdekRws7CSFsJlcl00qppsBEoAO5LHYhhBBCCGEF9+/D118nPzZ5skWT6fTExsbi5+fHtGnTCA0NBaBXRG93JQAAYhVJREFUr1588MEHVKtWLdP3ioyMpFChQjg4PPw4fO/ePWbMmMGhQ4eoUqUKY8eOpXz58mb9PYQQyeWKhFQp1Q6YALS0dSxCCCGEEEJk1MqVK5kwYQKnTp1Ca027du2YPn06np6eWbrf1KlTef/999m2bRstWrQAjAJlrVu3JigoKHEf9urVqzl06BDFixc3568jRPpu3ID4fzYT/fknlChhm3gsyM6ab6YMLyqlvlZKrVNKrVZKfR4/42xqfGul1G5gI0YireIfm6wYthBCCCGEEJmyZcsWGjZsSN++fTl58iT16tVjw4YNbNq0KcuJdMJ9y5Ytm5hIA6xbt479+/fz+OOP8+WXX9KxY0cuXLjAd999Z45fRYjMiY2FI0eSPzJRZC83sVoyrZSqDBwEfgJ8gc5AV+B14E+l1HKllH382JJKqQBgC/A0D3tQrwEaaa2fsVbcQgghhBBCZNShQ4fo1KkTHTt2JDg4GA8PD5YuXUpwcDAdOnTI9v1DQkKoUaNGsmNr1qxBKcWPP/7I6NGjWbduHW5ubvj7+2f7/YQQqbNKMq2UcgLWA3V5OLv86KMn8JFSqiKwH3gh/ngcsAyoq7XurrUOskbMQgghhBB5WlAQTJ0KHTtChQrg7AyFC0P16jB4MOzcaf731BpWrYKePcHDAwoWNJZ+1qwJL78MCxfm2hmskJAQ+vXrR4MGDdi0aRNubm7MnDmTY8eO0adPH7O9z/Xr1ylbtmyyY7t27cLd3R0vLy8AHBwcaNy4MefOnTPb+4okQkNh/Xp47z149lkoVQqUMh6DBmXsHosWPbwmvceiRdmLt0qVjL1PlSrZe598yFp7pl8CagEaOAu8D/wDPABqAmOB+sArQBOgSvx1q4B3tdYnrBSnEEIIIUTe17KlsYfxUQ8ewIkTxmPRIhgwAL77Dpycsv+e587BSy+lTNLv34ebN+HYMfjxR+jeHYoVy/77WdHo0aOZO3cu0dHRuLi4MGbMGN566y1cXFzM/l4ODg5ERkYmvr558yYnTpygV69eycYVKVKE27dvm/39BVCmjK0jEDmEtZLpF+N/XsCYYb6T5NxfSqmVwA6gKdAMiAWGaK2XWCk+IYQQQoj849Il42f58sYscYsWUKmSMSu8Zw989hlcvAhLlkB0NCxdmr33O38eWreGkBCwtzdmobt0gcqVIS7OOL55MwQEZPtXs4XZs2ejlKJQoUL4+Pjg4ODAV199leHr33333QyPrVq1Knv37iUuLg47OzvWr1+P1prmzZsnGxcaGoqbm1uG7yuyqFIlqFEDNm7M+j02bDD+XUxNhQpZv3dSXbvC+++nft4cX5rlM9ZKpp/CmJX+5JFEGgCtdZxS6j1gc/y47yWRzj2UUocfOZQrqsQLIYQQ+VaNGvDhh+DtbSS3STVuDP37Q7NmcPw4LFsGI0YYs9lZobWRPIeEQPHi8Ouvxnsk1agR9O4N33yTMp5cQmtNZGQks2bNytQ1SqlMJdMvvPACH374IV27dqV9+/ZMnz4de3t7unTpkuy+Bw8epGbNmpn6HUQGvfceNGxoPMqUgTNnjG0LWVW9unWWWBcrBrVrW/598hFrJT0l43/+m8aYv5M8l2oJQgghhBCWsn592udLlTJmpxMSNH//rCfTP/4IO3YYz+fOTZlIJ+WQO7+PHzhwoNXea9y4caxZs4ZffvmFX375BYB33nmHSpUqJY7ZuXMn165dSzFbLcxkyhRbRyByCGv9xSqIMeMcmtoArfU1pRKKdnPBGkEJ89Ba10r6WilVAThvo3CEEEIIYQ5t2jx8fupU1u8ze7bx84knoEePzF+/cye0amUsB+/cGeITyBTCw+Gpp4xZQitbuHCh1d7L1dWVffv24e/vz9WrV2nYsCGtWrVKNub69eu8/vrr9O7d22pxiTxs+HCjdgLAypXG1hBT1q41lpLnIzn1678YWwcghBBCCJGvRUU9fJ7VpdfnzkFgoPE8yTJkoqONPdn29lC2LDg6pn6P5s3hnXeMZem//gpffw0jR6Yc9+qrNkmkbaFgwYL0798/1fPdunWjW7du1gtI5G1ffAHbthmFCX19oUmTlPu4r1yBoUON55UqGf/u5wNW6zMthBBCCCFyke3bHz7P6t7bhEQaoE4d4wP34MHG3k0PD+NDd7FiRgXvQ4dSv8/kydCggfF8zBij8ndSy5fDDz8YzwcMyFqsQtjK4MFGATInJ2OLRePGMGGC8YWTOe3YAfXqQZEiUKiQ8e9g797w889GbYPUuLgY2zUcHIzK+wMHphw/eDCEhRlfkM2ZY964czBrz0yPVEqlutQ7M+O01lPNFJMQQgghhEgqLg4+/vjh60faLmXYkSMPn9+4AXXrGh+4k7p71/gw/8svsGCBUazsUY6Oxof5+vWN8f36wd69RvJx/jy88ooxrnp1o3f2EtvVsY2NjWXp0qWsXbuWoKAgwuJ/Xzc3N7y8vOjatSt9+/bFIYP7wxN6Rbu7u2Nvb5/p3tFJ91KLHGrbtofPr183HoGBRt2CL780ZoPNISQk+eszZ4zHypVGwcEVK8Dd3fS1DRsaX2pNmAB//GHENmaMcW7WLPj9d+P5O+/A00+bJ95cQOm0voUw15soFYexZ9pstNa5s9RjPpB0z/T58+epYK5y/kIIIYSwjqQflF98EVatytp9Xn8dZs40nhcoYPSUfvllePttI/ENC4Pvv4dJk4we146ORmsuLy/T95s792FiMW4cfPQRtG1rzKI7OsLu3Ua7rdKlk18XGgpWaBMVFBREnz59CIlPWkx9zlZKUaVKFZYtW0ajRo3SvaednR12dnYcOXKE6tWrY2dnR5I6Q2lSShETI7snLS5pNe+BA40e7elZtAimTTP+/WrSBCpWNI6fPm38++bv/3D218/P2LecVdWrG6tLOnY0qnkXLQq3bhn/rn3zjfGFFBhj9uwxzpsSG2u0uNu50/gia98+4987Ly/j3+2GDY1/B2/etNm/g2m5cOECFRP+d4aKWuts1+myZjJtTlqS6ZxLkmkhhBAiF9u+Hdq3h5gY4wPxP/+k/GCcUUOHwvz5D1/7+CR/nWDZMmO2GeCZZ+C331K/Z9euRqEjOzujENKKFcbx99+H8eONGfAWLZJf8+efUKJE1n6HDNq9ezft27fn/v37ODk50bFjRxo2bEiZMmXQWhMaGsq+ffvYuHEj0dHRODs7s2nTpnQrblepUgWlFH/88QceHh6JrzMq5NHZSGF+WUmmb98GV1dI7f/L9euNRDs62liSfeqUUV8gK27dMrZTmBIRYRQGTOiT/eab8Pnnqd/rzBmj0F94ODz5pJFM//WXEePBgw+/JJNk2nyUUq3SH5U5Wuvt6Y8StiDJtBBCCJFLHT5sJKI3bxozyRs2ZL0lFsCoUQ/3Tzo4wIULRl9eUxo2hKAgI0m+fj31D/9hYcZy8StXHh5r3txYKmujHtWRkZE89thjXL16lZ49ezJr1ixKp/IFxNWrV3nttdfw9/enbNmynDhxAhcXFytHLMwqK8l0Rrz/Pkyc+PD5+PHmue+jbt+GqlWNL6JcXIyfTk6pj//hB6MXfVJJZ8/zUTJtlQJkWuvt5n5YI24hhBBCiHwjJMRYBnrzppGULl+evUQajEJHCerVSz2RBujUyfgZFwfBwamPc3MzlncncHQ0lorbKJEG8PPz4+rVq/Tv358VK1akmkgDlClThpUrV/Lyyy9z9epV/Pz8rBipyFWGD384c73dgulP0aLQp4/xPDLS+FIrLS+/bLSrS9ChQ/Jl6AUKGBX3kz4KFDB/3DmAVPMWQgghhMjvLl0ylnZfumR8eF+wwDz9Yh/OAiV/nt7YR4uUJRUTY+zzTBAdnbyAkw2sXbuWggULMjNhf3gGzJw5E2dnZ9auXWvByESuVro0lCxpPDd3Ze9HPfnkw+fpvVdwsLE3OsFffxkzzwmKFDFWpCR9JP1iLQ/JqX2mhRBCCCGENVy7ZswsnT5tvJ41y3ztpWrVevg8NjbtsUnPp1XpeupUo/ARGHtOw8Nh9Ghjpixhqa2VHT16lGbNmlE0tcJNJhQrVozmzZvz119/Zeq9wsLC2Lp1K4cPH+b69esopShRogR16tShTZs2lExIvkTekIn98VZ5n3v3jJnp6GgoXNiYyQ4NhSFDYN06y8aYA0kyLYQQQgiRX92+bSyvTmhh9fHH8Oqr5rt/gwZQsKDxATwhWU/NqVMPn6fWnmfPHvjwQ+N5x47G8yZNjCJK/fsbS2FtsNz71q1baS7tTk3p0qW5detWhsbevn2bMWPGsGTJklQrdDs6OjJ48GCmT5+Oq6trpuMROUxYmPFlFxh9qC0paRu7tN7rrbce9nn/9luj6NhnnxkF0779FkaMsGycOYws8xZCCCHE/7d33+FRlWkfx793Qm/SQUWaZUHpRRAUUbCtYkMRCx0VxN1l7YoIuKtrV14REUVixYKKfRVYROk1NEGkSROIdGkJyfP+cSbJJJmUmcxkEvL7XNdcc8pznnNP4EDueZoUR4cPw5VXwpIl3v6wYd6SVeFUvrw3Ozd4k5v9+mvgcikp8Pnn3na5ctCqVdYyf/7ptYglJ3tdXydO9Jbk+de/vPOzZ2dcG7sAValShZ07dwZ93c6dO6mc3URrfhISEujQoQNvvvkmSUlJAJx++um0a9eOtm3b0sDXIp+YmMj48eM5//zz2b17d9DxSCEzfnz68lgXhn0+53T793tzJID3/LVpE7jcN9+kD7G4+Wa49VbvC63mzb1j994La9dGLs5CKKLJtJmVNLNWZtbMcpjD33c+TP2JRERERCRHiYlw3XVeAgreetD//nfw9cTFed1DzWDkyMBlHnrIe3fOa/X2JYMZPPlkest0v35QunTWMn//e3rr9vjx6a1n99+fnmiMGuWtgTtyZMbXoUPBf7YgNG7cmNmzZ7N37948X7Nnzx5mz57N2f5jVbMxePBgVq9eTbVq1XjllVfYs2cPa9euZc6cOcybN49169axe/duXn75ZapVq8aqVasYEs4eBhJemzZ5Lbo5+eorb0gDeL07+vULXK5z5/RncNOmrOf/+1+vZ0h2/vwTevTwZtAHr7t2oOcvIcFb2g68+Q3GjvW2S5WC997zJhg7fNj7wqsYrW0esW7eZnYj8CpQxXdou5k96Jx7P0Dx64DHgLcjFY+IiIiI+Nx8c/q6shdf7P0CvXJl9uVLlfLWjw3Fued6s/mOHQtTp3rLWP3zn+nr0b77rvcC75f0QEn5Z595LdHgJRXXX59+LiYG3n7bWy5r/37v/Lp1Ga8fMsRrJY+Qbt26MXPmTP7+97/zzjvv5Omav/3tbxw7doyrr746x3KrV6/m008/pXbt2syfP99/aZ8MKleuzJAhQ+jWrRvt2rXj448/ZtSoUfzlL38J+vNILmbNyvh3LLUrNnjHMy+N1bdvxv1Nm+Cii7whCt26eS27qcMENmyAyZO9V2qr9HPPZT/0ITdPPeW1IF9/vffsnX66N9Z5/35vErFx42DzZq/sX/6S/ZdiAwfCzp3pz5t/j4pzzvHuM3QoLFzofQmQ+kXAic45F/YXcC5wHDgG/Bf4EjgCJAOvBig/AkiORCx6FfwLqAM4wG3ZssWJiIhIIeP9mp73V716geuZODG9zIgR2d/v+HHnevfO+R5nnOHcmjVZr92+3blq1bwyDRs6d/Bg4Hu8+272de/aFeQPKDiHDh1ytWvXdjExMe7GG290O3fuzLbsjh073A033ODMzNWuXdsdOnQox7offfRRFxMT4yZNmpTneN5//31nZm5ETn8mEro+fYJ7fjKbMSNv15Ur59xrr+Ucy4UXppffuDHn8zm9LrzQua1bA9/jtdfSy91/f+AyKSnOXXqpVyY21rkWLbw6U1979+b8OQrAli1bXGqOAtRxYch7ItUy/QCQAlzsnJsNYGZ1gXeAO8ysLNDPOecidH8pQGa2KtMhTWwnIiIi6WJj4a23vBbxN96AefO8VukKFbxWre7d4c47s65F65zX0rx7t1fHu+961wRy663w9dcwaVLkP08m5cqVY/LkyXTt2pVPPvmEL774gksvvZRzzz2XWr61tXfu3Mn8+fOZOnUqSUlJlCpVio8//phy5crlWPfChQupUKECPXr0yHM8PXr0YNCgQcyfPz9fn0sipHVr7+/y3Lnems6//+61bh8/DlWqeM9Ely5ea3AIE9tl8NxzMH26d69ffvHus2+fNzb6lFOgXTvvubz00sAzev/6K9xzj7fdokX2w0HMvN4jzZp5z2t8fMbzgYZ3nAAsEvmsmf0O/OSc65HpeAngLeBm4D2gt3POmdkI4DHnXMFPvyj5lk0yfRbAli1bqFOnTsEHJSIiIsVTQkLWBGTXLqhRI+K3nj9/Pj179uS3334DIPOUQam/d9erV49JkybRvn37XOusX78+DRo0YMaMGUHFctFFF7Fx40Y2BRpHKxJJUXwGc7J161b/YRKnOee25rfOSLUgVgWyTNfonDtuZrcBSUBvIMbMekUoBikgzrlz/PfNrA6wJUrhiIiIiERFu3btWLt2LZMmTWLKlCksXryYhIQEAKpXr07r1q255ppruPXWWylZsmSe6gx12a1atWqxNLdJrkQkXyKVTO8AAn714GuJ7gcY0AtvRvF1gcqKiIiIiBQlJUuWpHfv3vTuHZ6Fag4ePEj5ECZPK1u2LH/++WdYYhCRwCKVTK8BOmd30pdQ9/Xt9gIORigOEREREZEiKz9DMjU9kUhkRSqZ/hZ4wcwucM79FKiAX0Lt8Lp862kXEREREclkx44d/Pjjj0FfIyKRFalk+iOgFlAtp0J+Xb43AfUiFIuIiIiISMT0798/5GvNjAkTJuRY5rvvvuO7774L+R4iEhkRmc1bijf/Ccg0m7eIiIgUqCjMJBwTE4OZBdWtOrW8mZGcnJxj3aHKrW6RiNBs3iIiIiIikhf/+te/giqfkJDAG2+8weHDh3Mtm5KSEmpYIhJhEU2mzawk0BQ4Dqxw2XxdZ2bNgebOubcjGY+IiIiISLgNGzYsT+UOHz7Mc889R1xcHIcPH6ZkyZLccccdEY5ORCIl9H4juTCzG4HfgYXAUmCzmd2STfFrgYmRikVEREREJFqSk5MZO3Ysp59+OqNGjeLgwYP06NGDn3/+mZdffjna4YlIiCLSMm1m5wKTgGRgKpAEdAXe8c3wPTgS9xURERERKUw++ugjHn30UdavX49zji5duvD000/TqlWraIcmIvkUqW7eDwApwMXOudkAZlYXeAe4w8zKAv2y6/YtIiIiIhISM6hePeuxAjZ9+nQeeughlixZgnOOli1b8tRTT3HJJZcUeCwiEhmRSqY7AlNSE2kA59xmM+sCvIW3rnSsmfVWQi0iIiIiYVO9ujebcJTEx8fz4IMPMm3aNJxzNGzYkH//+9/07NkzajGJSGREKpmuCvya+aBz7riZ3YbX7bs3EGNmvSIUg4iIiIhIgdi4cSPDhg3jo48+IiUlhZo1a/Loo48yaNAgSpTQAjpSjJQqBTfckPXYCShST/YOIOBCYs45Z2b9AAN64U2Cti5CcYiIiIiIRNTf//53xo8fT1JSEuXLl+e+++7j3nvvpXz58tEOTaTgnXQSfPxxtKMoEBaJXtZm9h3QwDl3Vg5lDIjDS6gPAhWcc7FhD0YKnJnVAbYAbNmyhTp16kQ5IhEREZHIiYmJwcwoV64cAwYMoGbNmkFd/8gjj0QoMhFJtXXrVk477bTU3dOcc1vzW2ekkumhwAvAhc65n3IoZ3hLYvXGa7RWMn0CUDItIiIixUlMTPpqsxbEZGfOOcyM5OTkbMvcfffd3HDDDXTq1CnDfUQkOJFIpiPVzfsjoBZQLadCfl2+NwH1IhSLiIiIiBQjBw/Crl2QmOgN1axZEypWjNz9+vTpE7G6x44dy6uvvkq1atW45ppr6N69O127dtU4bJFCICIt01K8qWVaRERECtL+/fDBBzBjBqxceIQLN7yZ4fyb9KfOGWVp3Rouugh69vSGdRYFP/zwA5MnT2bKlCls374dM6NSpUp069aN66+/nssvv5wyZcpEO0yRQq/IdPOW4k3JtIiIiBSEtWvh+efhvffg0CHvWHUSSCDjmOUa7OIPv7lxy5eH226De+6Bs7Kd4afwmTt3Lp988gmfffYZGzduTBunfcUVV9C9e3euvPJKKlSoEO0wRQqlIpdMm1lJoClwHFiR3ZrSZtYcaO6ceztiwUjEmNmqTIdKAGeBkmkREREJv6QkeOYZGDXK2/aXl2Q6ValSMGIEPPAAFLVe00uXLmXy5Ml89tlnrFmzBjOjVKlSXHLJJXTv3p2rr76aKlWqRDtMKeISEhKYMWMGq1atYvfu3ZgZVatWpWnTplx00UVUqxZgVO/+/TBwYMZjb7wR9e4gRSqZNrMbgVeB1Kd4O/Cgc+79AGVHAI9pArKiScm0iIiIFJSNG+HGG2Hx4sDng0mmU7VuDZMnQ/36ocXUv39/zj//fPr375/l3BdffEHdunVp0aJFlnMjRozgq6++YnF2HyaPVq9ezeTJk/nkk09Yvnw5ZkaJEiW48MIL6d69O927d6d69er5uocUL/v37+e+++7j7bff5vjx4wHLlCxZkn79+vH0009TqVKl9BMJCd5EBf527YIa2T+DBSESyXREpgQ0s3OBSUBFYCrwDVAdeMfMXo3EPSV6nHPn+L+ALtGOSURERE48q1fD+ednn0iHavFi6NjRqz8UcXFxzJo1K+C5a6+9lv/7v/8LeG7z5s3Ex8eHdlM/jRs3Zvjw4cTHx7N+/XqeeuopWrZsyfTp07nrrrsYO3Zsvu8hxUdCQgIdOnTgzTffJMnX9eP000+nXbt2tG3blgYNGgCQmJjI+PHjOf/889m9e3c0Q46aSM2v/wCQAlzsnLvcOdcN+AswC7jDzOIsmHUDRERERKRY27gRunSB7dtzLnd246zHbrkZmjbN+brt26FrV9i0KeQQC4UGDRpw//33M2/ePDZv3szo0aM5++yzox2WFCGDBw9m9erVVKtWjVdeeYU9e/awdu1a5syZw7x581i3bh27d+/m5Zdfplq1aqxatYohQ4ZEO+yoiFQy3RGY4pybnXrAObcZr8XyA7x1pd9WQi0iIiIiuUlK8rp2//574PMxMXD77bBsGcycmfX86NGwfLl3/vbbvfKBbN8ON9wA2fRqLRQ2BZHtn3rqqWnrVIvkxerVq/n000+pXbs2ixcvZvDgwZwUYKxz5cqVGTJkCIsWLaJmzZp8/PHH/PLLL1GIOLoilUxXBX7NfNA5dxy4DXgbuBV418y0+ryIiIiIZOuZZ7Lv2t2oEcyZA+PHQ7NmOdfTrJlXbs4c77pAFi/27ldYNWzYkDPPPJNBgwYxefJk9u7dG+2Q5ATy/vvvY2a88MIL/uOLs1W3bl1eeOEFnHNMmjSpACIsXCKVyO6AwLM8+Gb07ge8A9wMvIc3YZWIiIiISAZr13qzdgdywQWwYAG0axdcne3awfz53vWBjBzp3bcwql+/PuvXr2f8+PHcdNNN1KhRgzZt2vDQQw8xbdo0jh07Fu0QpQhbuHAhFSpUoEePHnm+pkePHlSsWJH58+dHMLLCKVLJ9Bqgc3YnfQl1X7yE+ibg7xGKQ0RERESKsBdeyLr8FXgty19/DRUrhlZvpUrw1VeBW6iTkuDFF0OrN9I2bNjA+vXree211+jevTtVqlRhyZIlPPPMM1x22WVUqVKFrl278tRTT7Fo0aJohytFzJo1a2jVqhUx2Y2FCCA2NpZWrVqxOtQZ/IqwSCXT3wJnmFk23/dlSKjfxpv1W0REREQkzf798O67WY/HxEBcXOiJdKpKlWDixMBjqN95Bw4cyF/9kdKgQQNuv/12PvroIxISEli8eDFPPfUUXbt2xcyYMWMGw4YNo3379tEOVYqYffv2UTPzslZ5UKtWLfbt2xf+gAq5SHWv/gioBQRYxTudc86ZWT9gE1AvQrGIiIiISBH0wQdw6FDW4wMGBN+1Ozvt20P//vDGGxmPHzoEkybBnXfmrZ5Zs2YFXGc6p3PZLacVrJYtW9K4cWNatGjBWWedxYQJEzh69GhY6pbi5eDBg5QvXz7o68qWLcuff/4ZgYgKt4gk08657cDDeSzrgJGRiENEREREiq4ZMwIfv/vu8N7n7ruzJtMAP/yQ92R6/fr1rFu3LuC5devWZTlnZjjnCHVxG+ccixYtYtq0aUybNo05c+aQmJiIc47KlStzxRVX0LVr15DqluLLS80K/tqiShN/iYiIiEihFGgG76ZNc5+1O1jNm0OTJrByZe73D6R3794hJ8XBGjduHNOmTWPGjBns27cP5xylS5emQ4cOdO3ala5du9KmTZsCi0dOPDt27ODHH38M+priSMm0iIiIiBQ6Bw5AoIbetm0jc7+2bbMm07/+CgcP5j42Oy4uLjJBBXDXXXdhZjRq1IiBAwfStWtXLrjgAsqUKVNgMciJ7bvvvuO7776LdhhFgtZ4FhEREZFCJyEh8PEmTSJzv+zq3bUr92uTAk03nkcLFiwI+hrnHBs2bGDhwoUsWrSIVatWhXx/kcyccyG9iiMl0yIiIiJS6CQmBj6e69xINWqAcxlfNWrker/s6s0uDn+tWrUiPj4+94IZ6k3kwQcfpGPHjkFdN3/+fJ544gk6dOjA3LlzGTZsGOeeey7Vq1enR48ejB8/no0bNwZVp0iqlJSUkF/JycnRDr/AqZu3iIiIiBQ6pUoFPh5odu9wyK7e7OLwt2rVKtq1a8ewYcMYNmwYsbGxOZZfuHAhffv2Zc2aNZTKyw38tG3blrZt2/Lwww9z9OhRfvzxx7RJyD755BMmT56MmdGgQQMuueQSXn311aDqF8m3kiXhwguzHjsBqWVaRERERAqd7Ja6zTyuOVyyqzcvS+6OGDEC5xyjRo3ivPPOY/Xq1QHLJSUl8cgjj9CxY0dWr15Ny5YtWbRoUcgxlylThksvvZRnnnmGJUuWsGPHDu677z5Kly7Nhg0bGD9+fMh1i4SscmVvKnz/V+XK0YwoYpRMi4iIiEihU7EinHFG1uMLF0bmfoHqPfPM3CcfAy+ZnjdvHo0bN2bRokW0atWKZ599NsM40sWLF9OqVSuefvppzIzHH3+c+fPnc8455+Qr7o0bN/L666/To0cPzj77bJ5//vm0NaZLly6dr7ql+Onfvz8jR47k+PHjQV13//33c/rpp0coqsJL3bxFREREpFBq3TrrjN4rVsDy5eFdHmvZssAt061b572OVq1asWTJEh599FFeeOEFHnroIb744gvGjRvHpEmTeOaZZzh+/DgtW7YkLi6Opk2bhhTr3r17mT59elrX7tTx0alrVrdo0SJtiawLLrggpHtI8RUXF4eZMW3aNCZPnkzt2rXzdN0ff/zBpk2bIhtcIaRkWkREREQKpYsugg8/zHp8zBgIZw/mMWMCH+/cObh6SpUqxTPPPMO1115Lv379mDNnDs18WX+JEiUYOXIkjzzyCCVKhP4reI0aNTLMntygQYO05LlLly5UrVo15LpFwPtiZs6cObRp04bJkyfTvn37aIdUaKmbt4iIiIgUSj17Bp5le8IEmD8/PPeYNw/efDPr8fLl4eabQ6uzffv2dO/ePUPSO2jQIB577LF8JdIAlStX5oYbbuC1115j/fr1rF+/ntdee40bb7xRibSExeWXX0779u3Zvn07nTt35rXXXot2SIWWkmkRERERKZROOgluuy3r8ZQU6NsXDhzIX/0HDkC/fl59mfXqBZUqBV/nmjVrOO+883j66aeJjY3l8ssvB2DMmDFcdtllbN26NV8x//HHH3z44YfcfvvtNGjQIF91iQRSu3ZtZs6cycCBA0lMTOSuu+5K25aMlEyLiIiISKF1zz2BV9VZswauuir0hPrAAe/6NWuynitVCv75z+DrfP7552nVqhULFy6kUaNGzJ07l2+++Ybvv/+eOnXqMHXqVJo2bUpcXFxoQYsUkJIlSzJ+/HjGjRtHyZIlmThxIp06dWL79u25X3zwIAwZkvF18GDkg44CJdMiIiIiUmiddRaMGBH43E8/Qbt2wXf5njfPu+6nnwKfHzHCu29ebdiwgU6dOvHAAw+QmJjIvffey5IlS2jTpg0AXbp0YeXKlfTr14/9+/czYMAAunXrxu+//x5c4CIF7I477uCHH37g5JNPZsGCBbRu3ZqfsntwUh09CmPHZnz5Zpg/0SiZFhEREZFC7cEHs59Ze80a6NABbr/dm+U7J8uWeeU6dgzcIg3Qpg088EBw8TVr1oxZs2bRsGFDZs6cybPPPptlWaqKFSsyYcIEvvzyS2rVqsXXX39NkyZNeO+994K7mUgBa9++PUuWLKFjx47s3LmTrl278vLLL0c7rEJBybSIiIiIFGolSsDHH8MppwQ+n5ICb7wBzZtD06bQvz+88AK89pr33r+/d7xFC69coDHS4NX/8cfe/YJx5MgR7r77bpYtW0bHjh1zLHvllVeyatUqevbsyd69e+nTp09wNxOJgpo1azJjxgzuuusukpKSGDp0KH369OHYsWPRDi2qtDSWiIiIiBR6DRrAtGnQtSvkNGxz5crAa0bn5pRTvPrr1w/+2mnTpnHRRRfluXyVKlV4//336d69O4MHDw7+hiJRUKJECcaMGUPbtm0ZPHgw7777LqtWreLTTz+NdmhRo5ZpERERESkSGjeG2bOz7/IdqtatvXobNw7t+mASaX/du3dn1apVod1UJEr69OnDTz/9RJ06dViyZAmtW7dm2bJl0Q4rKpRMi4iIiEiRUb8+zJ0LTzwReJbvYJQqBU8+6U1IFkqLdDjUqFEjOjcWyYfWrVuzePFiOnfuzO7du5VMi4iIiIgUBSVLwiOPeN2577wTypcP7vry5WHQIFixAh5+OPgx0iIC1atXZ+rUqQwdOhTnXLTDiQr90yH5ZmaZ+yfp75WIiIhE3Flnwbhx8PTT8MEH8MMPsHgx/Ppr1rJnnul15+7cGW6+GSpVKuhoRQq/jRs3UqFChTyXj42N5YUXXuCqq65iy5YtEYyscFLSIyIiIiJF2kkneS3Ud97p7R88CLt2QWKi15W7Zk2oWDG6MYoUBfXq1Qvpuk2bNrF169YwR1P4WXFtkpfIMbM6wBaALVu2UKdOnShHJCIiIiIikXLeeeexYMECkpOTISHB+wbL365dEOX5AbZu3cppp52Wunuacy7f2b9apkVERETkhPHbb7+RkJAAeJN7hdrSJiKSG01AJiIiIiJF2i+//MKAAQOoWbMmDRs2pF27drRr146GDRtSs2ZNBgwYwOrVq6MdpoicYJRMi4iIiEiRNWbMGJo3b05cXBx//PEHzrkMrz/++IO4uDhatGjB6NGjox2uiJxA1M1bRERERIqksWPH8o9//APnHM2bN6dXr160bduWWrVq4Zxj165dLFiwgHfeeYfly5dzzz33EBsby9133x3t0EXkBKAJyCTsNAGZiIiIRNqWLVs466yzSE5OZvTo0QwePDjH8q+88gpDhw6lRIkS/PLLL9StW7eAIhU58WWYgGzPHrjggowFfvoJqlaNTnA+kZiATN28RURERKTIGTNmDMeOHePpp5/ONZEGGDJkCE8//TTHjh3jlVdeKYAIRYqpqlVh1aqMrygn0pGilmkJO7VMi4iISKS1bNmS7du38/vvvxMTk7f2oeTkZE455RROPvlk4uPjIxugSBHUv3//kK776quv2L17t9cyXUhpaSwREREREbwlsDp16pTnRBogNjaW8847j5kzZ0YwMpGiKy4uDjMjmAbX1PJmFsHICicl0yIiIiJS5Bw5coRy5coFfV25cuU4evRoBCISKfp69+5dLJPiUCmZFhEREZEip0aNGqxfvz7o69avX0/16tUjEJFI0RcXFxftEIoUTUAmIiIiIkVOmzZtWLx4MWvWrMnzNT///DOLFi2ibdu2EYxMpOhKSkoK+doFCxaEMZKiQcm0iIiIiBQ5N910EykpKfTq1YsDBw7kWv7AgQP06tULgJ49e0Y6PJEiqVWrVkFPzpeYmMiDDz5Ix44dvQOHDsHIkRlfhw6FN9BCQrN5S9hpNm8REREpCO3atWPRokU0bNiQ5557jm7dumWZkCwlJYXPP/+c+++/n40bN9KmTRvmz58fpYhFCreYmBhKlizJsGHDGDZsGLGxsTmWX7hwIX379mXNmjWUKlWKI0eOQEIC1KyZseCuXVCjRgQjz53WmRYRERER8ZkyZQr169dn/fr1XH/99dSoUYOuXbty6623cuutt9K1a1eqV6/ODTfcwIYNG6hXrx5TpkyJdtgihdaIESNwzjFq1CjOO+88Vq9eHbBcUlISjzzyCB07dmT16tW0bNmSRYsWFXC00aeWaQk7tUyLiIhIQdm3bx9Dhgzhww8/JCUlBSBtNuLU33NjYmLo0aMHr7zyClWqVIlarCJFwZIlS+jduzc///wzpUuX5vHHH+e+++5Le64WL15M3759+fnnnylRogTDhw/n4YcfTm/FLkYt00qmJeyUTIuIiEhB27hxI19++SWLFy8mISEBgOrVq9O6dWu6detGw4YNoxyhSNGRmJjIo48+ygsvvIBzjg4dOjBu3DgmTZrEM888w/Hjx2nZsiVxcXE0bdo048VKpkVCp2RaREREIm3Pnj1UrVo1pGsnT57MDTfcEOaIRE48c+bMoV+/fqxbty7tWIkSJRg2bBiPPPIIJUoEWGm5GCXTGjMtIiIiIkVOkyZN+Oqrr4K6Zvfu3dx0003cdNNNEYpK5MTSvn17unfvjnMubdjEoEGDeOyxxwIn0sWMfgIiElVzt8zlubnPMWvzLPYf3c/JFU/mijOuYNgFwzi10qlB1zfyh5GMmjkqxzIPdnyQp7o+leX4jj93MG3DNBZtX8Si7YuI3xHPoaRD1DupHpuGbgo6FhERiZwdO3ZwzTXX0KdPH0aPHk3FihVzLP/pp59y1113sWvXLqpVq1ZAUYoUXWvWrKFPnz4sWrSI2NhYLrnkEr777jvGjBnDmjVrmDBhQrHvgaqWaRGJmjeWvMH5E8/n09WfEmMxNKnZhN2Hd/Pqoldp+mpTlu1YFnLdNcvXpONpHQO+6leuH/CaD1Z+QK/PejF6/mhmb5nNoaQTc01EEZETwcSJE6lUqRJvvfUWTZs2Zfr06QHL7dmzh1tuuYUbb7yRXbt2cfXVV7Ny5coCjlakaHn++edp1aoVCxcupFGjRsydO5dvvvmG77//njp16jB16lSaNm1KXFxctEONKrVMi0hUrNi5gkFfDSLFpfD8pc8ztP1QYiyGPxP/ZMAXA/ho1Udc9+F1rB6ymtIlSgdd/xVnXEHctXFBXVOpdCW6NOhCm1Pa0Prk1mw/uJ2h3w0N+t4iIhJ5ffr0oUuXLvTv359p06Zx6aWXMmjQIJ599lnKlSsHeEtnDR48mJ07d1KlShVGjx7NbbfdFuXIRQqvDRs20LdvX2bPno2Zce+99/Lvf/+b0qW938W6dOnCypUrGTp0KBMnTmTAgAF88sknjB8/npNPPjnK0Rc8tUyLSFSMmjmKZJdMj3N6cM959xBj3j9HFUpVIO6aOOqeVJeN+zYyMX5igcXUv2V/pvWexlNdn+LGc24MqZu5iIgUnDp16vD9998zZswYypUrx7hx42jRogVff/01t912G927d2fnzp1cddVVrFq1Som0SC6aNWvGrFmzaNiwITNnzuTZZ59NS6RTVaxYkQkTJvDll19Sq1Ytvv76a5o0acJ7770XpaijR8m0iBS4Q4mH+PrXrwEY0nZIlvNlS5alX4t+gNf1ujgY+t+h2Cij3BPl2Hog58kldx/ezagfRtHujXZUeboKsY/HYqMMG2XExcellav/Uv2045v2bQpLnAmHEqj0n0rYKOP2L24PS50iIvl11113ER8fT8eOHVm3bh1XX301kyZN4qSTTiIuLo4vvviC2rVrRztMkULvyJEj3H333SxbtoyOHTvmWPbKK69k1apV9OzZk71799KnT58CirLwUDItIgVu6Y6lHD1+lFKxpWhfp33AMp3rdwZg/rb5pLiUoO+xbOcybv30Vi5+62KunnQ1D097mMXbF+cn7IhZuWslryx8BYB/tPsHdSplP5nHhr0baD6uOSNnjmTBtgXsO7ovpJ9PqGqUr8G9590LwJvxb7Jo+6ICu7eISE5q1arFmWeeCZA26/D111/PzTffHM2wRIqUadOm8X//939pQyVyU6VKFd5//30+/vjjkJeqK8qUTItIgVu7ey0AdU+qS6nYUgHLnFH1DACOHj/Kb/t+C/oe8TvieX/F+8zYNIMv137JU7Ofos3rbeg7pS9Hjx8NPfgIeGDqAxxPOU75kuW5r8N9OZa986s72XZwGwBlS5Sl21ndGNR6EEPaDmFI2yE0rt44qHuH0no9tP1QKpWuRIpL4f6p9wd1PxGRSJgxY0baZEgVK1Zk0KBBlC5dmokTJ9K6dWuWLl0a7RBFioSLLroopOu6d+/OqlWrwhxN4acJyESkwO05sgeAamWzX5qkatn0bzf3Ht1LAxrkqe5TKp7CyAtHctkZl9GwSkMql6nMhr0biIuP47k5z/HWsrc4nnKcd69/N38fIkxmb57Nt+u+BeD2VrdTrVz2P5PfD/7OtA3TACgdW5plg5ZxZrUzCyROfyeVOYlBrQfxzJxn+GHTD0zbMI2uDbsWeBwiIkeOHOGBBx7g1VdfJSUlhYsvvpg333yTunXrcvfdd9OnTx8WL15M+/btefjhhxk+fDixsbHRDlvkhFSjRo1oh1Dg1DItIgXuSNIRgGxbpQHKlCiTtn046XCe676j9R2M6DyC9nXaU7N8TUrFlqJR9UY81fWptAT6vRXvMXfL3BCjD6+nZnvrXRvGXW3vyrHs0h3pLSsX1Lsg10R609BNuBEON8JluxxYqO5scyeGAfD07KfDWreISF7MmTOH5s2bM3bsWMqUKcPLL7/MtGnTqFu3LgBnn3028+bNY9SoUQD861//om3btqxYsSKaYYuc+MygevWML7NoRxURapkWkTx5aNpDISdNScOTKBGT/s9N2ZJlAUhMTsz2Gv+u2OVK5m3cTm56NunJi/NeZMG2BUz+eTLnnXZeWOoN1a+7f+Xrtd5EbJ3qdco1Od57ZG/a9skVorv8RMMqDbm4wcVM3zidaRumsXLXSprUbBLVmESkeOnUqRMpKSl07NiRuLg4Tj/99CxlYmNjGT58ON26daN3797Ex8fTtm1bhg8fzrBhw6IQtUgxUL06JCREO4oCoZZpEcmT8iXLU61stZBeqS2YqaqUqQLA7iO7s71faldw//Lh0PE0b2bKX/f8GrY6QzUxfiIOb5Kcm865KdfySSlJadupS4lFU49zeqRtT1xacEuYiYgAlCpViueee44ff/wxYCLtr0WLFixevJiHHnqI5ORkHnvssQKKUkROZGqZlmKp+bjmLN+5HID3r3+fm5vmbabPPlP68PaytwH4Z/t/8sJlL0QsxvzYsHcDLca14GDiQQCe6vIUD57/YI7X3P3N3WkzStepVIflg5ZTpWx6Ejv8wuEMv3B4WOL7S/W/ALB5/2YSkxMDdvf+dbeX7JYpUYZ6leuF5b6Q3rXcPzGNlvdWpK/HeG2jawOW+WHTD1z0VtbJQN5a9hZvLXsrw7E+zfsQd21c2n79l+rz235v8raN/9iY1tV7075NNBiddQx6oGMAM/rMSJtd3d+1ja5l0FeDcDjeX/k+z136HHaCduMSkcJnyZIlNGrUKM/lS5YsyZNPPsk111xD3759IxeYiBQb0W/aEImC21ulr4/7ZvybebrmwLEDTP55ctr+wFYDwx5XuDSs0pBX/vpK2v7wGcNzXBbq67VfpyXSMRbDO9e9kyGRDreWtVtSpkQZEpMTmbd1XsAyM3+bCcC5p54b1lbYFbu8sXKnVTotbHWGYvnO5WzevxmARtUbcXLF6HbbDkXN8jU5p+Y5AOz4c4eWyRKRAhVMIu2vXbt2xMfHhzcYESmW1DItxdJtzW7jgakPcOT4EaZvmM6mfZtynaBp0opJaRNhnVfnPM6ucXa+Yjh6/CilY0vnqSUvOSWZGIsJqtWvV/NefLvuWyatnERSShK3fHoLS+5YQvlS5TOU2/HnDvp93i9t/4EODwRshQyn8qXK89cz/8qnqz/llYWv0KlepwznjyQdYWK81204L92f8yp+RzzfrfsOgMtOvyxs9YZi6vqpadsX1L0g23KnVjyVIW2HALDmjzVM3zgd8BLwLg26ZCib3ZrdmVUqXSmtzreXvZ3Wg6F3895ULFUxYAzZuaDuBazctRKAqRum0vbUtnmKQUQkmkqXLh3tEETkBKBkWoqlymUq0+OcHry17C0cjolLJzLqolE5XjNh6YS07VBbpQ8nHeaJH5/grWVvse3gNkrGlKRLwy78p8t/aFG7RYay7y1/j9HzR7Ns5zISkxOZ2mtq0MsPvXrlq8zZMoff9v/G2t1rGfrfobx+9etp551z9J3Sl4TD3iQRbU5pw+MXPR7SZwvWY50e4/M1n/PRqo9od2o7hrYfSozF8Gfinwz4YgCb92+m3kn1GNByQJZrX5r3Ei/Ne4k6leowq/+stOOrdq1i9PzRDG4zmJYnt8xwzddrv2bglwNJdsm0OrkV1zW+LuKfMSfzt81P225Wq1m25c6sdiZj/joGgLj4uLRkut2p7dKOB6tq2app13619qu0ZHpU51FBz/rt//d2wbYFIcUjIhKKxx9/nBYtWnD11VdnObd8+XKqVq1KnTp1spx7+eWXmTFjBp9++mlBhClSZN3+xe2sTFgZ1Ria1GiS4XfXwkbJtBRbd7S+I23MadyyOEZ0HpFtd+IVO1ewcPtCACqWqhhSa2liciKXvXsZszanJ39JKUn8d91/+d/G//FFzy+47AyvtfTR/z3KEz89EfQ9MjupzEm8e/27dI7rTLJL5o2lb/DXM/+alki+NO8lvlvvtdSWL1me965/j5KxJfN937xoXrs5r/z1Fe765i7u/f5enp3zLKdWPJW1u9dyMPEglctU5rObPqN0iaytB/uO7ksbC+wvKSWJ15e8zutLXqdymco0qNyAkrEl2bh3Y9oXBs1qNePznp8H/LPesn8LLV9LT8JTZxvfcmAL1Z+pnnb85iY38/JfX87X508dsw9eK3NR1bh647TtZTuXRTESESluRo4cSd++fQMm0y1btqRv375MmDAhy7klS5bw+eefF0SIIkXayoSV2Q7Hy0mZJOi/NOOxN1vC0YL5FbNAacx0MWBmt5nZa2a2yMyOmZkzs77RjivaOpzWgXNqeOM9N+/fnKHbbWb+rdI9m/TM0lU6L/4181/M2jyLc089lx/6/MCOe3cwtddUmtZsSmJyIjdNvolN+zbx1dqv0hLp6xpdx499f2T7PduzdIXOq/Prns+wC9KX/xj45UC2HdjGsh3LeHj6w2nHX7r8Jc6qdlZI9wjVnW3u5Kd+P3Fto2tJTklmxa4VVClbhUGtB7Fi8Iosrcu5qV+5Pv++6N9cddZVVCtbjfV717P0d+9f864Nu/LaVa+xYOAC6lTK2lIBkOyS2X1kd9ortcU2xaUEPB4q51yGLwOyi6coOLVSehfwrQe2kpySHMVoREQ8zjmcc9EOQ6RYqpAIr3yT8VUh+9VQizS1TBcP/wbqAX8Av/u2BW8isqHfDQW8hDm1ZdhfYnIi7y5/N20/lC7eR48f5eUFL1OtbDW+v+17TipzEgC1KtRidv/ZXBh3IUt3LKXf5/1Yt2cdAA91fIj/dP1PCJ8qq8cufIxpG6cxZ8sc9hzZQ6/PerHz0E6OJR8D4PrG10dtQrUOp3Xgs5s+C+qakZ1HMrLzyCzHK5epzLBOoa8bWr9yfdyIyP/ytf/Y/gzraFcrWy3i94yU6uXSW+yPpxznj8N/UKtCrShGJCIiIlIw1DJdPAwE6jvnagDjoh1MYdK7eW/KlCgDwOe/fM7uw1nXPZ6yZkraeshNazbl3FPPDfo+87fOZ/+x/QxqMygtkU5VsXRFPr7xY8qVLMcPm35g64GtXNLwEp7s8mQInyiw2JhY3r3uXSqVrgTAjE0z+DnhZ8CbXOr1boV3LMqJ6FDioQz75UqWi1Ik+Zc59kNJh7IpKSIiInJiUct0MeCcmxbtGAqrKmWrcMPZN/Du8ndJTE7kneXvMLT90AxlwjHxWGqX3pa1A3dbPr3q6TzU8SEe++ExYi2W/7vi/8K+Xm+DKg0Y+9ex3PbZbWnHDOPt696matmqYb2XBMdRdLsiqhuliIhI8VG+ZHma1mqaY5nKB5OAjEuytjmlNfsq5jxoesXOFUXuS3kl0zkws5rAub5XW98rtT/mW865vkHUVQ/4O3AlcBpwDFgPfAS84pw7HL7IJRh3tLojrRv3hKUTMiTTm/dvZtoG77uI0rGlua3ZbYGqyFVqwhEbE5ttmTantAF843YDtJCHQ83yNTPsn1zxZNqd2i4i95LsZR5zfyTpCBVKVYhSNPlz5PiRDPvlSwY/n4CIiIgUDU1rNWXugLk5F0pIgH9m/J3z21u/hRo1crzsvAnnhTThWTSpm3fOdgJfAsOBy0lPpINiZt2A5cA9wF+AckAVoA3wDLDUzM4IR8ASvAvqXZA2m/LKXSszLO8zcelEUlwK4I0rDrUFN3WSptSu1Zk55xjxw4i0/bu/vZuk5KSQ7pWdPw7/QZ8pfTIc235wO0P/OzSs95HcnVT6pLThBeD92RRVCYcS0rZLxJTIMIZaRERE5ESmlum82wysAS4N5iIzawl8CJQF/gT+A8zw7fcEbgfOAr42szbOufxNEywhub3V7dz7/b0ATFgygXNPPRfnHBPjJ6aVyc8EXe3rtKdsibKMXTiWf7b/J2VLls1w/tH/PcrC7QtpWbslWw9sJX5HPPd8d0++l1/yN/CLgfz+5+8AnFH1DDbu3Zi2XNaVZ13JtY2uDdu9JGdmRv3K9VnzxxrAmwW7cY3GuVxVOG07uC1tu06lOjn2vhARCbf4+Hgef/zxoM7Fx8dHOCoRKS6UTOfscWAhsNA5t9PM6gMbg6xjNF7ifBy41Dnn3y/if2b2K17r9FnAvcDIzBWY2fNA1sV2c7inc+7XIOMs1vo078Mj0x/hWPIxPlj1AS9e/iKzN89OG+vcsEpDLqp/Ucj1VyhVgTta38Ho+aO54r0rePGyF2lcozHr96znmTnP8PaytykZU5IJV0/gl92/cPMnNzNm4Rj+TPqTJy5+glMqnpKvz/faotf4/BdvTc2yJcry5c1f8sHKDxg1cxTgJdrnnnpuvu8jedesVrO0ZPqX3b9wyemXRCWO/I7NX52wOm27ea3m+Q1HRCQoy5YtY9mywGvcZ3fOORf2eUlEpHhSMp0D59yI3Etlz8zOBS7w7U7IlEineh7oBzQG/mFmTzjnMvfvvRMIZiDiZEDJdBCqlavG9Y2vZ9LKSRw4doCPV33Mt+u+TTvfv0X/fP/H+2SXJ5mzZQ4zf5tJq/Gtspx/+YqXaXlyS1qe3JKlvy/lmTnPEBcfR1x8HKVjS/Ptrd9yUYPgE/pf/viFe76/J23/+Uufp1H1RgzvNJzv13/P3K1z2X1kN70/683UXlP1C0YBOfeUc/lo1UcALNsR+BfBguDf3TyUoQXLdqbHHspM9yIioerUqZP+zxKRqFIyHVnX+m1PDFTAOZdiZm/jdf+uDFwEfJ+pTNGcmaiIuaP1HUxaOQmAl+a/lNbiFmux9GvZL9/1lytZjv/1+R8jfxjJxPiJ7DmyB/CW2xpx4Qi6n909rezTlzzNX6r/hVEzR7F5/2aOJR8j2SUHfc/E5ERu+fQWDid589t1O6sbg9sO9j5XTCzvXv8uLca14GDiQaZvnM7zc5/nvg735fuzSu4uOf0SmOptz9oyK2px+K9xve3gNs6sdmZQ1/+0+ae07UsaRqd1XUSKpx9++CHaIYhIMacJyCLrfN/7ITLPD5/RTL/tjpELR3LSuX5nzqzqJRLxO+I5lnwMgCvOvCJs3Z8rlKrAc5c+xx/3/0HC/QkceOgAywcvz5BIp+rfsj+b/rGJbfdsY/WQ1XQ4rUPQ93v0f4+y5PclANSuUJsJV0/IcL5hlYaM+euYtP1h/xtG/I74oO8jwWtWqxl1T6oLwJo/1vD7wd+jEkeTmk3Stj9e9XFQ1+46tItVu1YB3t+v1qe0DmtsIiIiIoWZkunISp1RaJ1z7ngO5dYEuEai4PZWt2c5NrBl6BOPZcfMqF6uOhVLV8y13CkVT6FR9UaUK1kuqHv8b+P/eH7u8149GBOvmUiN8lmXJOjdvDc3nXMT4GvJ/uQWjiQdyVJOwu/WprembU9ZMyUqMXRvnP5FzthFY2n/Rnvu+vou7vv+vrTX+j3rA147Zc2UtDWyb25yMzGm/1JERESk+FA37wgxszJA6hoxW3Mq65zba2aH8MZFnxaBWAaS3kqeusr6QDPr7Nue5Zx7I9z3LYr6tujLozMeJTE5EYCTK5zMlWddGeWogrfnyB56f9Y7bVmvv537Ny4/4/Jsy4+7ahxzt85l8/7NrP5jNfd+fy9jrxxbUOEWW/1a9OOpWU/hcHy46sO0LvgF6ZLTL+HmJjenDXGYv20+87fNz1DmqrOu4vSqp2e59uOf01uy+7XI/1AIEZFw2bZtG9u2bePo0aPZlunUqVMBRiQiJyIl05Hj3+T4Zx7KpybTkRgffT7QJ9OxjmTsUp7nZNrM6uRSpHZe6ypsapSvwfl1z+d/G/8HeLN8l4gpeo/JHV/ekbZkUZOaTXj6kqdzLF+5TGXeue4dLnrrIlJcCq8uepUrzriCbn/pVhDhFltnVjuTK8+6kq/WfsXM32by6+5fgx6zHA7vXf8eV511FZNWTiJ+Rzx/HP6Do8ez/wUUYOPejUzfMB2ALg260LRW0xzLi4gUhM8//5yHHnqItWvX5ljOzDh+PKdOgyIiuSt6WULRUcZvOzEP5Y/53svmWCoEzrm+QN8wVrkljHUVKocSD7Fg2wLA6xo9oNWAKEcUmsk9Jgd9Tad6nUh+LPhJziR/Hj7/Yb5a+xUAryx8hZcufynbsn1b9KVvi755rnvT0E15Kmdm3NL0Fm5pekue6x63aFxaF+8HOz6Y5+tERCLl22+/pXv37qSkpHDSSSfRsGFDKlWqFO2wROQEpmQ6cvybdUrloXzqOtIarBpFH676kD8TvY4Enet35oyqZ0Q5IjnRdTitA1eccQXfrvuWN5a8wfBOw6lWrlruF0bR/qP7Gbd4HAAX1rswamtki4j4e+KJJ0hJSWHkyJE89NBDlCqVl1+/RCTsatQA56IdRYHQbDGRc9BvOy9dt1PXkc5Ll/BoOy2XV9vohRY65xwvL3g5bX9Qm0FRjEaKk2cueYYSMSU4lHSI5+Y8F+1wcjV6/mgOHDtAjMXw7CXPRjscEREA4uPjadGiBY899pgSaREpEEqmI8Q5dxTY7dvNcYyxmVUhPZku9F2onXNbc3oBO6IdYyjGLBiTtixU/cr1ua7RddENSIqNJjWbMKTtEMBLVLcd2BbliLKXcCghLeHv36I/bU8tkt+dicgJKDY2lkaNGkU7DBEpRtTNO7J+Bi4AzjCzEjksj+X/L//qyIclAAu2LeD9Fe+TmJzI8p3Lmb1ldtq5xzs/TsnYklGMToqbly5/Kcfx0oVFjfI1OPDwgWiHISKSRbNmzdi6NccFVEREwkrJdGTNwkumywOtgfnZlLvQb3t2NmUkzH5O+JnR80dnOX7j2TfSq3mvKEQkIiIioRo6dCg9evRg0aJFtGnTJtrhiEgxoG7ekTXFbzvgIqxmFgP09u3uA2ZENiQJpEyJMjSr1YwXL3uRSd0nRTscERERCVL37t0ZPnw4l112GWPHjmXz5s3RDklETnBqmY4g59wCM/sJr3V6gJm95Zybm6nYvUBj3/Zo51xSgQYZBma2KtOhIvH3KthlhkRERKTwio2NTdv+29/+xt/+9rdsy2qdaREJhyKR9ESLmZ0P+K+NVN1v+wwz6+tf3jkXF6Caf+B13S4LfG9mT+K1PpcFegJ3+MqtBZ4PS+AiIiIixYwLYimeYMqKiGRHyXTOBgJ9sjnX0ffyF5e5kHNuqZndBLwLVAKeDFDXWuBK59zBAOcKPefcOf77ZlaHIjAruYiIiJw4UlJSoh2CiBQzGjNdAJxzXwLNgBfxEufDeOOjFwEPAi2dc+uiFqCIiIiIiIgERS3TOXDO9QX6hqmu34B7fC8REREREREpwpRMi4iIiIiISK5W7FzBeRPOi1jdRY2SaREREREREcnVoaRDzNs6L9phFBoaMy0iIiIiIiISJCXTIiIiIiIiIkFSN2/JNzNblemQ/l6JiIiIiMgJTUmPiIiIiIiIZNCkRpNoh1AoYsiJkmnJN+fcOf77ZlYH2BKlcEREREREJJ9ev/r1aIdQ6GnMtIiIiIiIiEiQlEyLiIiIiIiIBEnJtIiIiIiIiEiQlEyLiIiIiIiIBEnJtIiIiIiIiEiQlEyLiIiIiIiIBEnJtIiIiIiIiEiQtM605JuZrcp0SH+vRERERETkhKaWaREREREREZEgqQVR8s05d47/vpnVAbZEKRwREREREZGIU8u0iIiIiIiISJCUTIuIiIiIiIgEScm0iIiIiIiISJCUTIuIiIiIiIgEScm0iIiIiIiISJCUTIuIiIiIiIgEScm0iIiIiIiISJCUTIuIiIiIiIgEqUS0A5Ciz8xWZTqkv1ciIiIiInJCU8u0iIiIiIiISJDUgij55pw7x3/fzOoAW6IUjoiIiIiISMSpZVpEREREREQkSEqmRURERERERIKkZFpEREREREQkSEqmRURERERERIKkZFpEREREREQkSEqmRURERERERIKkZFpEREREREQkSEqmRURERERERIKkZFpEREREREQkSEqmRURERERERIJUItoByAkpNnXj999/j2YcIiIiIiIimfOS2OzKBcOcc+GoR4oxM1uV6VAZoGE0YhEREREREclFW+fcovxWom7eIiIiIiIiIkFSy7SEnZmVBpr6dhOAZN92bWChb7stsKOAQysMpvveu0Q1iowKMqZw3ysc9YVaRyjXBXNNbmX1PHn0TIX3XnqmPMX1mSqMzxMUXFyRuE9ReqbC+TyBninQM1XYnqlYoIZve4Vz7lh+g9GYaQk731/MLN0mzMx/d4dzbmuBBVVImNlxgML02QsypnDfKxz1hVpHKNcFc01uZfU8efRM6ZnK6zV6pnJXGJ8nKLi4InGfovRMhfN58pXx39UzVYgU82fqt3DFAurmLSIiIiIiIhI0JdMiIiIiIiIiQVIyLSIiIiIiIhIkTUAmBcbM6gBbfLunFbbxIyJFiZ4nkfDSMyUSXnqmpDhQy7SIiIiIiIhIkJRMi4iIiIiIiARJybSIiIiIiIhIkDRmWkRERERERCRIapkWERERERERCZKSaREREREREZEgKZkWERERERERCZKSaREREREREZEgKZkWERERERERCZKSaREREREREZEgKZmWIsPMbjOz18xskZkdMzNnZn2jHZdIUWNmp5rZUDP73sw2m1mime0ws0/MrF204xMpasysjJm9YGY/mtl2Mzvqe6Zmm1k/MysZ7RhFijoze9D3u58zs/bRjkcEtM60FCFmtgmoB/wBHPJt93POxUUxLJEix8yeAh4E1gM/AAnAmcC1gAG3OOc+jFZ8IkWNmVUHtgALgLV4z1QV4Aq8/6u+B65wzqVELUiRIszMmgCLgONAeeA859y86EYlAiWiHYBIEAYCvzrnfjOzh4D/RDsgkSJqAdDZOTfT/6CZXQBMB141synOuWNRiU6k6NkDnOScS/Q/aGYlgKnApXiJ9ddRiE2kSPP17HgLiAd+BW6LakAiftTNW4oM59w059xv0Y5DpKhzzn2aOZH2Hf8JmIHXota0wAMTKaKccymZE2nf8ePAZ77dMwo2KpETxjDgHKA/kBzlWEQyUDItuTKzmmZ2lZk9bmbfmtkffmNW4oKsq56ZPW9ma8zskJntMbOFZna/mZWL0EcQKTSKwPOU5Hs/HuL1IgWqMD9TZhYDXO7bXRns9SLRUJieKTNrhZdMj3LO/RziRxKJGHXzlrzYGY5KzKwb8C5Qye9wOaCN7zXQzK50zq0Lx/1ECqlC+zyZWV2gK/A7sCIccYoUgELzTJlZKeARvLkHqgFdgEbAROfc9HDEKVIACsUzZWalgbfxunc/E46YRMJNLdMSrM14E6kExcxaAh/i/YP6J963jB3wftF43VfsLOBrM6sYnlBFCr1C8zz5xqS9A5QGHnTOqSudFEXRfqZKASOAx4AhwF+A54A7go1JpJCI5jP1ON7kmP30f5IUVmqZlrx4HFgILHTO7TSz+sDGIOsYDZTF6zp6qXNurt+5/5nZr3jfOp4F3AuMzG/QIoVUoXuefF1R44BOwOvOuXeCjEckmgrNM+Wc+xMw3zN1CtANeBI4z8z+6pw7EGRcItEQ9WfKzM4D7gNGOuc0REIKLbVMS66ccyOcc18550Lq9mNm5wIX+HYnZPoHNdXzwGrf9j+0JqecqArb8+T7pf9N4Ba87niDQolLJFoK2zPliynFObfVOfcqXqt0R7yWOZFCL9rPlG8W/LeA5cBTocQgUlCUTEtBuNZve2KgAr61N9/27VYGLopsSCJF1rV+2/l6nnyJ9ESgDzAJ6Kt1cKUYutZvOxL/R6V2ke0cZFwiRdW1ftuhPFMV8Lp3twAS/SY/c3j/XwHM9R3zv5dIgVM3bykI5/veDwGLcyjnv1RPR0IYoyNSDITlefJLpHvjjWvrpTFpUkxF+v+oU3zvSTmWEjlx5PeZOgZMyOaaTniJ9hdAArAp5ChFwkDJtBSExr73db41N7OzJsA1IpJRvp8nv67dvYGPgduUSEsxFo5n6mxgk3PucKbj5YAXfLvf5DdQkSIiX8+Uc+4IMDDQBb6luc4E/uOcm5fPOEXyTcm0RJSZlQGq+3a35lTWObfXzA4B5YHTAtQ1kPRvO5v63geaWWff9izn3Bv5jVmksArj8/QYXle5P4G1wKNmlrmKKc65+PzGLFKYhfGZ6gHcY2az8FrKDgCnAlfgLZH1E/Bi+CIXKZzC+XufSFGgZFoizX+5gz/zUD71H9UKAc6dT/pYmVQdfa9USqblRBau56m+770C2U+KtAlvbU+RE1m4nqmv8LpzdwDO853fjzeB0gfAm7m00ImcKML5e59IoadkWiKtjN92Yh7KH/O9l818wjnXF+ib/5BEiqywPE96lkTShOuZWgQsCldQIkVY2H7vC0T/f0lho9m8JdKO+m2XykP50r73IxGIRaSo0/MkEl56pkTCS8+UFCtKpiXSDvpt56ULT3nfe166BokUN3qeRMJLz5RIeOmZkmJFybRElHPuKLDbt1snp7JmVoX0f1S3RDIukaJIz5NIeOmZEgkvPVNS3CiZloLws+/9DDPLaZx+I7/t1RGMR6Qo0/MkEl56pkTCS8+UFBtKpqUgzPK9lwda51DuQr/t2ZELR6RI0/MkEl56pkTCS8+UFBtKpqUgTPHb7heogJnFAL19u/uAGZENSaTImuK3redJJP+m+G3rmRLJvyl+23qm5ISmZFoizjm3APjJtzvAzM4LUOxeoLFve7RzLqlAghMpYvQ8iYSXnimR8NIzJcWJOeeiHYMUcmZ2PnCG36HqwLO+7dnAG/7lnXNxAepo6StbFm/GxifxvoUsC/QE7vAVXQu0cc4dzFyHyIlAz5NIeOmZEgkvPVMieadkWnJlZnFAn7yWd85ZNvV0A94FKmVz6VrgSufcumBjFCkq9DyJhJeeKZHw0jMlknfq5i0Fxjn3JdAMeBHvH9DDeONkFgEPAi31D6pI3uh5EgkvPVMi4aVnSooDtUyLiIiIiIiIBEkt0yIiIiIiIiJBUjItIiIiIiIiEiQl0yIiIiIiIiJBUjItIiIiIiIiEiQl0yIiIiIiIiJBUjItIiIiIiIiEiQl0yIiIiIiIiJBUjItIiIiIiIiEiQl0yIiIiIiIiJBUjItIiIiIiIiEiQl0yIiIiIiIiJBUjItIiIiIiIiEiQl0yIiIiIiIiJBUjItIiIiIiIiEiQl0yIiIiIiIiJBUjItIiIiIiIiEiQl0yIiIiIiIiJBUjItIiLFkpn1NTPne9XPRz1xvjo2hS+68DGz+n6fs2+E7hGWn6Xkn5n19/05rDAzy3Sus9+fU+foRAhm9rUvhlHRikFEJByUTIuISJGWKUHIy6tvtGOWrPy+lEh9vZnH627NdN2mCIdaaJlZBeBJ3+7jzjkXzXhy8C/f+31mVieqkYiI5IOSaRERESmMuptZmTyU6xXxSIqOvwO1gJ+ByVGOJVvOuXnAVKAc8EiUwxERCVmJaAcgIiISRq8CY3MpsxXAORcHxEU4nqhzzm0CLLdyhcxRoBJwDfBhdoXMrDbQ1e+avCTfJyQzKwvc49t9sRC3Sqd6HrgEGGBm/3LO/R7tgEREgqWWaREROZHscs6tzOW1L9pBSq6+8L3n1up8CxALbAcWRjSiwu82oBpwjELcKu1nGrALKAXcGeVYRERComRaRERECpu3fe+XmVnNHMqlJtvvASmRDanQG+B7/7oofGHknEsmvddBv8yTpYmIFAVKpkVEpFjK6wzUZtbYNznWFjM76nt/38za5uEeeZ492a/cyFzKdTSzN8zsFzM7YGaJZrbVzL4ysyFmVjlT+Vxn8zazJmb2qJl956vrmJn9aWa/mtlbZtY+t88aZt8BCXjD0XoGKmBmTYAWvt13cqvQzEqZWTczG2NmC81sr5klmdluM5tvZiPNrHoe6rnYzCaZ2UYzO2Jmh83sNzObZ2bPmdnF2VxX2cyGmdlcv3snmNnPZvaZmQ02s1q53T+buusB7Xy7n4RSh19dVXwxOl+MtwYoU8LM/m5mC3x/B/eZ2SIz+6fv55zXGeRTY60LdMxP3CIi0aAx0yIiItkwsx54raSl/Q7XAW4GbjSzQQUYS1lggu/emZ3qe10J1ABGBlFvZ2BGgFOlgDN8r95m9pRz7uGggg6Rc+64mU3Cm1CrF/B/AYr19r0vc86tyEPD5nigT4DjVYFzfa+7zewa59zsQBWY2YvA0ACn6vpe7YC+QIak3Mwa43VrPiXTddV9r8bAtXhd1sfk9kEC6Oy3PS+E6wEws1PwvshoAhwBbnTOfZ2pTCVfmcxfsLT2vXqS927bC4FkvM99BTAr1NhFRKJBybSIiEgAvpbn9/D+rzwGvAh849tuhzcL8at4MydHOpYY4HO8CZsAfsWbaG0RcBg4GegA9Aih+hLAIeBr4H/AGuAAUBM4By+hrQc8ZGZrnXMTQ/8kQXnHd+82ZtbIObcm9YTv53GLX7m8KAFsAD4DFgCbgeN4n60r0B9vzPFnZtbEObfL/2Izu4r0RHo53p/9amA/UBnvZ9UVLykP9FlOAZKA14FvgR14PQTr4CWm1+XxcwRyge99t3NuQygVmNnpeDNsN8D78+/mnPsxQNEPSE+kZwMvA+vwvsS5DbgVGJeXezrnDpvZKqAZcGEocYuIRJOSaREROZHU9HX/zc6uzElSDsbi/T+ZBFyaKbFYYGaf4rUCNg8t1KDcTXoi/Rlws3PuWKYyX5vZcLzEOhjxQJ1sxtl+Z2ZjgK989x9hZm/7xrtGlHNukZmtxmu17QUM8zt9MV5LfDLeFx55MQLYEGCW60XAJ2Y2FpiDlxT+DRieqVzqFxW/AR2dc39mOv8D8IqZVfU/aGYN8VpsAe5xzmVueV4AfGpmD+Il5aHo4HuPD+ViM2sKfA/Uxutef7lzbkmActfgtSADfIrXcu0/Vv2/ZrYUeC6I2y/GS6ZbmpkVgVnIRUTSaMy0iIicSAYDK3J43ZWXSnyt0m18u68FaqFzzm0D7g1DzLnFEgPc79vdCvQOkEinxpTiiyvPnHN/5DRhlXMu0e/+9Ugfp1wQUludb7WM/bhTJx6b5pzbkZeKnHPrc0rUnHMrgDd8u9cGKFLb974kQCLtX8+ebK4DCNTSm3qdc87tze58Lur43vP6RVEaM+sAzMSLcwtwQaBE2id1WMMRYFCmRDrVC0B21weSGnM5Mv6sREQKPSXTIiIiWXX1286pW/NnwL7IhkIL0pOl13NK5MLBzEqbWV0zO9s3MVkTMq5TXRAt8aneAxxeEn+BL75ywPW+83nt4p2Fb6Kt083sHL/Puc93+mwzK5npktR1kDv5ukTnlf/6yX1DizZ7ZlYaqOjbDSoZN7PL8Lp2VwF+wWtx/yWbsiVI74r9X+dcQqByvi8sgvlz8f/yQcm0iBQpSqZFROREMso5Zzm8Ruaxnqa+90RgWXaFnHNJwNJ8xpybln7bP0XiBmZW3sweNrNleOOnfwNWkd6i7/8Zc53xOlycc5vxuk9Demv09UAF4E+8LzPyzMyamtmbZvY7XhK3DlhJ+ucc6Ssag5dg+ktdrqsasNLMPjCzfmZ2Ri6fYSPpf27/NLNVZva4b1bwcsHEnw3/buXBJNM34K3nXQ6vJfkC59yWHMqfDpT1bS/Ope5FQcThH3P5IK4TEYk6JdMiIiJZpSYoe/IwPnhnhGPxT15/z7ZUiMxbFmwF8CTe2NXYXC4pm8v5cEtt5bzRzMqQnlR/4pw7nNdKzGwAXtLYj7y1gGb4nM656Xhj148AZYCbgDeBX81bTmycmWXXan8zMNe3fTbeeOzpwD4z+9HMBvk+WyiOZhdzLobgzdh+DLg2u5ZmP/5fLuRWNrfz/vxjTgriOhGRqFMyLSIikr3iMBnSO3gzODu85PBS4DS8hDHGOWdkTLBzXYMqzCbjJbAnAXcAXXzH89yV2Mwa4c0wXQJvjO79eJOCVQNKpfZcAAb4X5a5HufcK0B94J94M7vv9506FW85qKVm9u8A121zznXAGz4wFq/V3wEl8bqvv4rX2n1WXj+Tn314s5JDxlbq3Hzqey8NfGhmFXMqHEH+Me+LUgwiIiFRMi0iIpJVatfTamaWW0ttrRzO+U/QlO3/uWaWU/fWP/y2g52pO0e+JPN83+6TzrkBzrmpzrmtzrljfhN2BZOkhZVz7iAwxbf7NF5iv5XAa2Nnpy9eIp0MXOice845t8Q5t8fXVT9Vrp/TObfLOfeSc+5KX/nWwL/xEkEDhvlmvQ507XTn3BDnXBO8WcN74i1HBl436g+D+EypdTrS/45k7pqek5eBB3zb5wHfmFmFHMr7d8eukUvduZ335x9zTt3MRUQKHSXTIiIiWa3wvZcihwm3fJMytcihnoN+2zklOjm1SPrPjNwph3KhOMdvO6dErk0O5wpCait0alfo97KZSTo7qZ9zmf961QEE9Tl9s6cvcc4NJ73FHPKw3rdzbrdz7kPnXBe8scsALczszGBi8En9+xpUy7Zz7lm89dLB+1Ll6xzGca8nvUt562zKpArm55ga88Zguu2LiBQGSqZFRESymua33SeHcteRc5K8yW87pwTj5hzOLSO9xW5gLq2HwSrht51T6/igHM4VhO/xfgbHfK9gZ/FO/ZzZfkYzOxm4OqToAN9yUqmtt8FO0jbdbzuUCd5SJzj7S7DdtZ1z/yF9Te1OwFdmlmXstXPuOOlLe11uZgFbn31LmPUKdC4bqc/F/CCuEREpFJRMi4iIZOKcW0B6i/BgMzs/cxlf8vVcLvXsBZb7dvuZWZZuxL66/5FDHSnAs77dOsDbZlYqUFkzizGzU3KKKZNf/bb7ZlPnYCBgt+WC4pxLds7Vdc6V8b1WBVlF6uc807eucga+1tj3yWECLzO7KVCS6Xe+DelfrGz0O97CzFrkcJ2RvhSbI+MXMHmVmkzHEEIvAufcv4FRvt2LgC+zmRDtNd97WWCcbw30zO4BWuXlvmbWkPQvD77Pe8QiIoWDkmkREZHA7sKb2KkkMNXMnjSz882srZndjbc80MnksHSWzyu+91rAT2bW08xamlkXM3sBrxU8t6WEXsFbDxi81vAVZvYPM+voq+sKMxsFrMGbpCuvluItDQVwp5l9aGZXmVlrM7vGzD7GmzBrdhB1FkapLdkxeF2ZHzGzTmZ2ru/LgnigMzl/zqeB7WYWZ2b9fX8XWppZVzMbCXznK5cMvOF3XQu8ickWmNlwM7vS9/Ntb2Y3+67r5iv7hXMulBnb55A+g3aXnApmx7dsXOrkaV2Az31rWPuX+ZT0pPd64Ecz62FmrczsMjN7B+8LpgX+l+Vw29RYjwNfhRK3iEg0lci9iIiISPHjnJtvZr2BOLyxug/7XqmO4yXcHclhXDVeYnUFcC3eskiTMp1fAXQnh2WvnHMpZnYt8Bbe+sBnAS/l9bPkUK8zs154k2BVwRvrm3m87wrgRmB7fu8XLc65hWY2Aq/1tTLwRIBiz+N9sdAxh6oq43X7z67r/zFgkHMu0JcjbX2v7Mwh42zieeacSzSzt4F78YYMPBpiPcN98wA8hDer+6dmdp1zLtGv2E14XwCci/ezyvzzWor3XKT+DI6SvVt879/lYWkuEZFCRy3TIiIi2XDOTQJa4rVsbgcSgW3AR8D5zrnX81BHCl4CPARYCBzyvZYDw4B2zrkdeajnsHPuRuBiXzwb8ZaMSsQbT/wl3vJMzwf5GePxWk/HAb/hrfW7B6918T7g3BBbSwsV59zjwJV4Lat78X5uW/GWiLrUOXdfLlVchNcd/xO8LxgS8L5QOYCXQD4HnO2ci8t03STgr8CLwCy8P7fDfvf/ArgVuMA5tzsfHzH172JDM2sfaiXOuYdJH1bwV+AT/2EFzrl9eJOV/ROvd8afeBPtxeN92dQBr3U+1X4CMLNTSZ9Qb2yo8YqIRJOlr3ohIiIiIkWVmX2D1wviDefc7VGM4zbSu9af4ZxbH6DMo8C/gNXAOU6/kIpIEaRkWkREROQEYGbN8SbOO46XxEZl3WYz+xqvVTsBqJU5UfbNSL8JqAb0dM4Fvb62iEhhoG7eIiIiIicA59wyvFnJS5FxfH/YmNmpucxqPhAvkQZ4O5sW5yF4ifQCvCETIiJFkiYgExERETlxPAKsB46amUWg+/QlwDNm9gHwA944+xjgdLzJya71ldsJ/CebOg7iTQb3qbp3i0hRpm7eIiIiIpInZtYXmJhLsd+BK51zSyMfkYhI9CiZFhEREZE8MbPqeLPTX4a31FsNoCKwD28ysS+Bcc65g9GKUUSkoCiZFhEREREREQmSJiATERERERERCZKSaREREREREZEgKZkWERERERERCZKSaREREREREZEgKZkWERERERERCZKSaREREREREZEgKZkWERERERERCZKSaREREREREZEgKZkWERERERERCZKSaREREREREZEgKZkWERERERERCZKSaREREREREZEgKZkWERERERERCZKSaREREREREZEgKZkWERERERERCZKSaREREREREZEgKZkWERERERERCZKSaREREREREZEgKZkWERERERERCdL/A2yBcMtU4CKGAAAAAElFTkSuQmCC\n" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
} | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"The above plot shows active mass of the detector vs reported Rn222 concentration. The FIT line includes all solid green points which are nominal representations of each experiment. The lime green points are NOT fit, and represent distillation. The majenta point is NOT fit and represents a off normal (Qdrive source removed). Blue points are using same trend w/ 8x reduction. Open points are proposed experiments and their BG goals. \n" | |
], | |
"metadata": { | |
"id": "3_WYytiQucS7" | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"powerfit" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "W0K6wBgVAIQU", | |
"outputId": "e2e75527-1c22-4108-f8c8-85b0c3fc0ecb" | |
}, | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"(array([ 2.51693677, -0.50528612]), array([[ 0.06620849, -0.02135455],\n", | |
" [-0.02135455, 0.0075349 ]]), array([86.65910235, 40.85696785, 20.19719102, 13.20124732, 10.98118362,\n", | |
" 7.06272243, 5.17575813, 4.08862797, 3.75026631]))" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 6 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [], | |
"metadata": { | |
"id": "-3MFb5TaS3np" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [], | |
"metadata": { | |
"id": "ek5NUs1UXXTS" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment