Created
August 26, 2014 05:45
-
-
Save bryangoodrich/38a1888cb020920e1b7d to your computer and use it in GitHub Desktop.
Regularized Gradient Descent Logistic Classifier with Decision Boundary
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
loadInput <- function() { | |
structure(c(0.051267, -0.092742, -0.21371, -0.375, -0.51325, | |
-0.52477, -0.39804, -0.30588, 0.016705, 0.13191, 0.38537, 0.52938, | |
0.63882, 0.73675, 0.54666, 0.322, 0.16647, -0.046659, -0.17339, | |
-0.47869, -0.60541, -0.62846, -0.59389, -0.42108, -0.11578, 0.20104, | |
0.46601, 0.67339, -0.13882, -0.29435, -0.26555, -0.16187, -0.17339, | |
-0.28283, -0.36348, -0.30012, -0.23675, -0.06394, 0.062788, 0.22984, | |
0.2932, 0.48329, 0.64459, 0.46025, 0.6273, 0.57546, 0.72523, | |
0.22408, 0.44297, 0.322, 0.13767, -0.0063364, -0.092742, -0.20795, | |
-0.20795, -0.43836, -0.21947, -0.13882, 0.18376, 0.22408, 0.29896, | |
0.50634, 0.61578, 0.60426, 0.76555, 0.92684, 0.82316, 0.96141, | |
0.93836, 0.86348, 0.89804, 0.85196, 0.82892, 0.79435, 0.59274, | |
0.51786, 0.46601, 0.35081, 0.28744, 0.085829, 0.14919, -0.13306, | |
-0.40956, -0.39228, -0.74366, -0.69758, -0.75518, -0.69758, -0.4038, | |
-0.38076, -0.50749, -0.54781, 0.10311, 0.057028, -0.10426, -0.081221, | |
0.28744, 0.39689, 0.63882, 0.82316, 0.67339, 1.0709, -0.046659, | |
-0.23675, -0.15035, -0.49021, -0.46717, -0.28859, -0.61118, -0.66302, | |
-0.59965, -0.72638, -0.83007, -0.72062, -0.59389, -0.48445, -0.0063364, | |
0.63265, 0.69956, 0.68494, 0.69225, 0.50219, 0.46564, 0.2098, | |
0.034357, -0.19225, -0.40424, -0.51389, -0.56506, -0.5212, -0.24342, | |
-0.18494, 0.48757, 0.5826, 0.53874, 0.81652, 0.69956, 0.63377, | |
0.59722, 0.33406, 0.005117, -0.27266, -0.39693, -0.60161, -0.53582, | |
-0.53582, 0.54605, 0.77997, 0.96272, 0.8019, 0.64839, 0.47295, | |
0.31213, 0.027047, -0.21418, -0.18494, -0.16301, -0.41155, -0.2288, | |
-0.18494, -0.14108, 0.012427, 0.15863, 0.26827, 0.44371, 0.52412, | |
0.67032, 0.69225, 0.57529, 0.39985, 0.55336, 0.35599, 0.17325, | |
0.21711, -0.016813, -0.27266, 0.93348, 0.77997, 0.61915, 0.75804, | |
0.7288, 0.59722, 0.50219, 0.3633, 0.27558, 0.085526, 0.012427, | |
-0.082602, -0.20687, -0.36769, -0.5212, -0.55775, -0.7405, -0.5943, | |
-0.41886, -0.57968, -0.76974, -0.75512, -0.57968, -0.4481, -0.41155, | |
-0.25804, -0.25804, 0.041667, 0.2902, 0.68494, 0.70687, 0.91886, | |
0.90424, 0.70687, 0.77997, 0.91886, 0.99196, 1.1089, 1.087, 0.82383, | |
0.88962, 0.66301, 0.64108, 0.10015, -0.57968, -0.63816, -0.36769, | |
-0.3019, -0.13377, -0.060673, -0.067982, -0.21418, -0.41886, | |
-0.082602, 0.31213, 0.53874, 0.49488, 0.99927, 0.99927, -0.030612, | |
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, | |
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), .Dim = c(118L, 3L)) | |
} | |
# The important Functions | |
gradientDescent <- function(X, y, initial_theta = NULL, lambda = 0, method = "BFGS", ...) { | |
if (is.null(initial_theta)) initial_theta <- matrix(0, nrow = ncol(X)) | |
m <- nrow(y) | |
sigmoid <- function(x) 1 / (1 + exp(-x)) | |
gradFunction <- function(theta) { | |
treg <- theta | |
treg[1] <- 0 | |
est <- sigmoid(X %*% theta) | |
J <- (1/m) * (t(X) %*% (est - y)) | |
Regularization <- (lambda/m) * treg | |
J + Regularization | |
} | |
costFunction <- function(theta) { | |
treg <- theta | |
treg[1] <- 0 | |
est <- sigmoid(X %*% theta) | |
J <- (1/m) * (t(-y) %*% log(est) - t(1-y) %*% log(1 - est)) | |
Regularization <- (lambda / (2*m)) * (t(treg) %*% treg) | |
J + Regularization | |
} | |
optim(initial_theta, costFunction, gradFunction, method = method, ...) | |
} | |
mapFeatures <- function(x,y, degree = 6) { | |
x <- as.matrix(x) | |
y <- as.matrix(y) | |
out <- matrix(1, nrow = nrow(x)) | |
e <- ncol(out) | |
for (i in 1:degree) | |
for (j in 0:i) | |
out <- cbind(out, x^(i-j) * y^(j)) | |
out | |
} | |
plotBoundary <- function(theta, x, y) { | |
cpal <- c('red', 'blue') | |
ppal <- c("+", "*") | |
plot(x[, 1], x[, 2], col = cpal[y+1], pch = ppal[y+1]) | |
u <- seq(-1, 1.5, length = 50) | |
v <- seq(-1, 1.5, length = 50) | |
z <- matrix(0, nrow = length(u), ncol = length(v)) | |
for (i in 1:length(u)) | |
for (j in 1:length(v)) | |
z[i, j] <- mapFeatures(u[i], v[j], degree = 6) %*% theta | |
contour(u, v, z, add = TRUE) | |
} | |
# The Computations | |
input <- loadInput() | |
X <- cbind(1, input[, 1:2]) | |
y <- cbind(input[, 3]) | |
# Now could be a good time to plot, but I took that out for this. You'll see it with plotBoundary | |
Xexpanded <- mapFeatures(X[, 2], X[, 3]) | |
initial_theta <- matrix(0, nrow=ncol(X)) # No, we're not using this | |
# The Actual work. | |
# Toy around with Lambda := 0, 1, 100 to see underfit, good fit, and overfitting | |
res <- gradientDescent(Xexpanded, y, lambda = 1, method = "BFGS", control = list(maxit = 10000)) | |
plotBoundary(res$par, Xexpanded[, 2:3], y) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Not every line of code here is needed, such as adding the column vector of 1's to X since mapFeatures does this. I also don't need to pre-define the initial theta in this case since the function defaults to that same initialization.
Also, per advice from my colleague Dason at TalkStats.com, I could have added a "data" parameter to my gradFunction and costFunction that are used in optim and just passed X directly into optim with that additional parameter "data = X". My approach here was basically to define grad and cost within the same function scope that optim is called, so they get access to it. Cheap, I know. But I never do optimization in R!
"The More You Know" http://braintrustmusic.files.wordpress.com/2014/05/the-more-you-know2.png