Created
October 6, 2023 11:17
-
-
Save billmetangmo/7baa9ad60652a8f34114b3afcd0c6ea1 to your computer and use it in GitHub Desktop.
Generate histogram from gitlab pipelines scrape with Bardeen
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import datetime | |
import re | |
import matplotlib.pyplot as plt | |
# Load the CSV file | |
df = pd.read_csv("/mnt/data/06-10-2023_10-10.csv") | |
# Function to convert status text to timedelta | |
def convert_to_timedelta_updated_with_weeks(text): | |
if "minutes" in text: | |
minutes = int(re.search(r'(\d+) minutes', text).group(1)) | |
return datetime.timedelta(minutes=minutes) | |
elif "hours" in text: | |
hours = int(re.search(r'(\d+) hours', text).group(1)) | |
return datetime.timedelta(hours=hours) | |
elif "days" in text: | |
days = int(re.search(r'(\d+) days', text).group(1)) | |
return datetime.timedelta(days=days) | |
elif "weeks" in text: | |
weeks = int(re.search(r'(\d+) weeks', text).group(1)) | |
return datetime.timedelta(weeks=weeks) | |
else: | |
return datetime.timedelta() | |
# Filter jobs with "Passed" status | |
passed_jobs = df[df['Status'].str.contains('Passed')].copy() | |
# Calculate the ExecutionDate and Stage columns | |
passed_jobs['TimeAgo'] = passed_jobs['Status'].apply(convert_to_timedelta_updated_with_weeks) | |
current_time = datetime.datetime.now() | |
passed_jobs['ExecutionDate'] = current_time - passed_jobs['TimeAgo'] | |
passed_jobs['Stage'] = passed_jobs['Pipeline'].str.extract(r'Stage: (\w+)') | |
passed_jobs.drop('TimeAgo', axis=1, inplace=True) | |
# Extract and convert execution time | |
passed_jobs['ExecutionTime'] = passed_jobs['Status'].str.extract(r'(\d{2}:\d{2}:\d{2})') | |
passed_jobs['ExecutionTime'] = pd.to_timedelta(passed_jobs['ExecutionTime']) | |
passed_jobs['ExecutionTimeSeconds'] = passed_jobs['ExecutionTime'].dt.total_seconds() | |
# Group data and calculate mean execution time | |
mean_execution_times_seconds = passed_jobs.groupby(['ExecutionDateOnly', 'Stage'])['ExecutionTimeSeconds'].mean() | |
mean_execution_times_seconds_unstacked = mean_execution_times_seconds.unstack() | |
mean_execution_times_seconds_filled = mean_execution_times_seconds_unstacked.fillna(0) | |
# Define colors | |
colors = [ | |
'#E63946', '#F1FAEE', '#A8DADC', '#457B9D', '#1D3557', | |
'#F4A261', '#2A9D8F', '#264653', '#E76F51', '#2B2D42' | |
] | |
# Plot data | |
fig, ax = plt.subplots(figsize=(15, 7)) | |
mean_execution_times_seconds_filled.plot(kind='bar', ax=ax, color=colors) | |
ax.set_ylabel('Average Execution Time (seconds)') | |
ax.set_title('Average Execution Time by Day for Each Stage') | |
plt.xticks(rotation=45) | |
plt.tight_layout() | |
plt.legend(title="Stage") | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment