Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save bclavie/93d3b161d7fb41131bca41a50b6726c5 to your computer and use it in GitHub Desktop.
Save bclavie/93d3b161d7fb41131bca41a50b6726c5 to your computer and use it in GitHub Desktop.
from transformers import (
AutoTokenizer,
DataCollatorWithPadding,
TrainingArguments,
Trainer,
AutoModelForSequenceClassification,
)
from datasets import load_dataset, ClassLabel
import numpy as np
import evaluate
import argparse
import os
from sklearn.metrics import classification_report, confusion_matrix
def compute_metrics(eval_pred):
from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score
logits, labels = eval_pred
preds = np.round(logits.squeeze()).clip(0, 5).astype(int)
labels = np.round(labels.squeeze()).astype(int)
precision = precision_score(labels, preds, average="macro", zero_division=0)
recall = recall_score(labels, preds, average="macro", zero_division=0)
f1 = f1_score(labels, preds, average="macro", zero_division=0)
accuracy = accuracy_score(labels, preds)
report = classification_report(labels, preds)
cm = confusion_matrix(labels, preds)
print("Validation Report:\n" + report)
print("Confusion Matrix:\n" + str(cm))
return {
"precision": precision,
"recall": recall,
"f1_macro": f1,
"accuracy": accuracy,
}
def main(args):
dataset = load_dataset(
args.dataset_name, split="train", num_proc=8, cache_dir="/mnt/data/bert24/fineweb_edu/cache"
)
dataset = dataset.map(
lambda x: {args.target_column: np.clip(int(x[args.target_column]), 0, 5)},
num_proc=1,
keep_in_memory=True,
)
dataset = dataset.cast_column(
args.target_column, ClassLabel(names=[str(i) for i in range(6)])
)
dataset = dataset.train_test_split(
train_size=0.9, seed=42, stratify_by_column=args.target_column
)
model = AutoModelForSequenceClassification.from_pretrained(
args.base_model_name,
num_labels=args.num_labels,
classifier_dropout=0.1,
output_hidden_states=False,
classifier_pooling="mean",
)
tokenizer = AutoTokenizer.from_pretrained(
args.base_model_name,
model_max_length=1024,
add_prefix_space=True,
)
if not tokenizer.pad_token:
tokenizer.pad_token = tokenizer.eos_token
def preprocess(examples):
batch = tokenizer(examples["text"], truncation=True)
batch["labels"] = np.float32(examples[args.target_column])
return batch
dataset = dataset.map(preprocess, batched=True, num_proc=1, keep_in_memory=True)
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
training_args = TrainingArguments(
output_dir=args.checkpoint_dir,
eval_strategy="epoch",
save_strategy="epoch",
eval_steps=1000,
save_steps=1000,
logging_steps=100,
learning_rate=args.learning_rate,
weight_decay=5e-6/args.learning_rate,
num_train_epochs=10,
warmup_ratio=0.1,
seed=0,
per_device_train_batch_size=16,
per_device_eval_batch_size=128,
eval_on_start=False,
load_best_model_at_end=True,
metric_for_best_model="f1_macro",
greater_is_better=True,
bf16=True,
push_to_hub=True,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset["train"],
eval_dataset=dataset["test"],
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
)
trainer.train()
trainer.save_model(os.path.join(args.checkpoint_dir, "final"))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--base_model_name", type=str, default="answerdotai/ModernBERT-base"
)
parser.add_argument(
"--dataset_name",
type=str,
default="HuggingFaceFW/fineweb-edu-llama3-annotations",
)
parser.add_argument("--target_column", type=str, default="score")
parser.add_argument(
"--checkpoint_dir",
type=str,
default="./ckpts/",
)
parser.add_argument(
"--output_model_name", type=str, default=None
)
parser.add_argument(
"--num_labels", type=int, default=1
)
parser.add_argument(
"--learning_rate", type=float, default=8e-5
)
args = parser.parse_args()
main(args)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment