Last active
January 18, 2025 05:22
-
-
Save bclavie/93d3b161d7fb41131bca41a50b6726c5 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from transformers import ( | |
AutoTokenizer, | |
DataCollatorWithPadding, | |
TrainingArguments, | |
Trainer, | |
AutoModelForSequenceClassification, | |
) | |
from datasets import load_dataset, ClassLabel | |
import numpy as np | |
import evaluate | |
import argparse | |
import os | |
from sklearn.metrics import classification_report, confusion_matrix | |
def compute_metrics(eval_pred): | |
from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score | |
logits, labels = eval_pred | |
preds = np.round(logits.squeeze()).clip(0, 5).astype(int) | |
labels = np.round(labels.squeeze()).astype(int) | |
precision = precision_score(labels, preds, average="macro", zero_division=0) | |
recall = recall_score(labels, preds, average="macro", zero_division=0) | |
f1 = f1_score(labels, preds, average="macro", zero_division=0) | |
accuracy = accuracy_score(labels, preds) | |
report = classification_report(labels, preds) | |
cm = confusion_matrix(labels, preds) | |
print("Validation Report:\n" + report) | |
print("Confusion Matrix:\n" + str(cm)) | |
return { | |
"precision": precision, | |
"recall": recall, | |
"f1_macro": f1, | |
"accuracy": accuracy, | |
} | |
def main(args): | |
dataset = load_dataset( | |
args.dataset_name, split="train", num_proc=8, cache_dir="/mnt/data/bert24/fineweb_edu/cache" | |
) | |
dataset = dataset.map( | |
lambda x: {args.target_column: np.clip(int(x[args.target_column]), 0, 5)}, | |
num_proc=1, | |
keep_in_memory=True, | |
) | |
dataset = dataset.cast_column( | |
args.target_column, ClassLabel(names=[str(i) for i in range(6)]) | |
) | |
dataset = dataset.train_test_split( | |
train_size=0.9, seed=42, stratify_by_column=args.target_column | |
) | |
model = AutoModelForSequenceClassification.from_pretrained( | |
args.base_model_name, | |
num_labels=args.num_labels, | |
classifier_dropout=0.1, | |
output_hidden_states=False, | |
classifier_pooling="mean", | |
) | |
tokenizer = AutoTokenizer.from_pretrained( | |
args.base_model_name, | |
model_max_length=1024, | |
add_prefix_space=True, | |
) | |
if not tokenizer.pad_token: | |
tokenizer.pad_token = tokenizer.eos_token | |
def preprocess(examples): | |
batch = tokenizer(examples["text"], truncation=True) | |
batch["labels"] = np.float32(examples[args.target_column]) | |
return batch | |
dataset = dataset.map(preprocess, batched=True, num_proc=1, keep_in_memory=True) | |
data_collator = DataCollatorWithPadding(tokenizer=tokenizer) | |
training_args = TrainingArguments( | |
output_dir=args.checkpoint_dir, | |
eval_strategy="epoch", | |
save_strategy="epoch", | |
eval_steps=1000, | |
save_steps=1000, | |
logging_steps=100, | |
learning_rate=args.learning_rate, | |
weight_decay=5e-6/args.learning_rate, | |
num_train_epochs=10, | |
warmup_ratio=0.1, | |
seed=0, | |
per_device_train_batch_size=16, | |
per_device_eval_batch_size=128, | |
eval_on_start=False, | |
load_best_model_at_end=True, | |
metric_for_best_model="f1_macro", | |
greater_is_better=True, | |
bf16=True, | |
push_to_hub=True, | |
) | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=dataset["train"], | |
eval_dataset=dataset["test"], | |
tokenizer=tokenizer, | |
data_collator=data_collator, | |
compute_metrics=compute_metrics, | |
) | |
trainer.train() | |
trainer.save_model(os.path.join(args.checkpoint_dir, "final")) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--base_model_name", type=str, default="answerdotai/ModernBERT-base" | |
) | |
parser.add_argument( | |
"--dataset_name", | |
type=str, | |
default="HuggingFaceFW/fineweb-edu-llama3-annotations", | |
) | |
parser.add_argument("--target_column", type=str, default="score") | |
parser.add_argument( | |
"--checkpoint_dir", | |
type=str, | |
default="./ckpts/", | |
) | |
parser.add_argument( | |
"--output_model_name", type=str, default=None | |
) | |
parser.add_argument( | |
"--num_labels", type=int, default=1 | |
) | |
parser.add_argument( | |
"--learning_rate", type=float, default=8e-5 | |
) | |
args = parser.parse_args() | |
main(args) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment