Created
November 30, 2013 13:09
-
-
Save bchirico/7718887 to your computer and use it in GitHub Desktop.
Python for data analysis - chapter 2 - example
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
unames = ['user_id', 'gender', 'age', 'occupation', 'zip'] | |
users = pd.read_table('users.dat', sep='::', header=None, | |
names=unames) | |
rnames = ['user_id', 'movie_id', 'rating', 'timestamp'] | |
ratings = pd.read_table('ratings.dat', sep='::', header=None, | |
names=rnames) | |
mnames = ['movie_id', 'title', 'genres'] | |
movies = pd.read_table('movies.dat', sep='::', header=None, | |
names=mnames) | |
data = pd.merge(pd.merge(ratings, users), movies) | |
data.ix[0] | |
mean_ratings = data.pivot_table('rating', rows='title', cols='gender', aggfunc='mean') | |
mean_ratings[-15:] | |
ratings_by_title = data.groupby('title').size() | |
ratings_by_title[:10] | |
active_titles = ratings_by_title.index[ratings_by_title >= 250] | |
mean_ratings = mean_ratings.ix[active_titles] | |
top_female_ratings = mean_ratings.sort_index(by='F', ascending=False) | |
top_female_ratings[:10] | |
mean_ratings['diff'] = mean_ratings['M'] - mean_ratings['F'] | |
sorted_by_diff = mean_ratings.sort_index(by='diff') | |
sorted_by_diff[-10:] | |
sorted_by_diff[::-1][:15] | |
rating_std_by_title = data.groupby('title')['rating'].std() | |
rating_std_by_title = rating_std_by_title.ix[active_titles] | |
rating_std_by_title.order(ascending=False)[:10] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment