Created
June 25, 2020 20:40
-
-
Save b-mehta/1fc26da4107e2e3e440a530f288357cf to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Freeze display | |
Tactic State | |
4 goals | |
α : Type u₁, | |
β : Type u₂, | |
_inst_1 : category α, | |
_inst_2 : category β, | |
e_functor : α ⥤ β, | |
e_inverse : β ⥤ α, | |
e_unit_iso : 𝟭 α ≅ e_functor ⋙ e_inverse, | |
e_counit_iso : e_inverse ⋙ e_functor ≅ 𝟭 β, | |
e_functor_unit_iso_comp' : | |
auto_param | |
(∀ (X : α), | |
e_functor.map (e_unit_iso.hom.app X) ≫ e_counit_iso.hom.app (e_functor.obj X) = 𝟙 (e_functor.obj X)) | |
(name.mk_string "obviously" name.anonymous) | |
⊢ 𝟭 α ⋙ e_functor = e_functor | |
α : Type u₁, | |
β : Type u₂, | |
_inst_1 : category α, | |
_inst_2 : category β, | |
e_functor : α ⥤ β, | |
e_inverse : β ⥤ α, | |
e_unit_iso : 𝟭 α ≅ e_functor ⋙ e_inverse, | |
e_counit_iso : e_inverse ⋙ e_functor ≅ 𝟭 β, | |
e_functor_unit_iso_comp' : | |
auto_param | |
(∀ (X : α), | |
e_functor.map (e_unit_iso.hom.app X) ≫ e_counit_iso.hom.app (e_functor.obj X) = 𝟙 (e_functor.obj X)) | |
(name.mk_string "obviously" name.anonymous) | |
⊢ {functor := e_functor, | |
inverse := e_inverse, | |
unit_iso := e_unit_iso, | |
counit_iso := e_counit_iso, | |
functor_unit_iso_comp' := e_functor_unit_iso_comp'}.inverse ⋙ | |
equivalence.refl.inverse = | |
e_inverse | |
α : Type u₁, | |
β : Type u₂, | |
_inst_1 : category α, | |
_inst_2 : category β, | |
e_functor : α ⥤ β, | |
e_inverse : β ⥤ α, | |
e_unit_iso : 𝟭 α ≅ e_functor ⋙ e_inverse, | |
e_counit_iso : e_inverse ⋙ e_functor ≅ 𝟭 β, | |
e_functor_unit_iso_comp' : | |
auto_param | |
(∀ (X : α), | |
e_functor.map (e_unit_iso.hom.app X) ≫ e_counit_iso.hom.app (e_functor.obj X) = 𝟙 (e_functor.obj X)) | |
(name.mk_string "obviously" name.anonymous) | |
⊢ equivalence.adjointify_η | |
(equivalence.refl.unit_iso ≪≫ | |
iso_whisker_left equivalence.refl.functor | |
(iso_whisker_right | |
{functor := e_functor, | |
inverse := e_inverse, | |
unit_iso := e_unit_iso, | |
counit_iso := e_counit_iso, | |
functor_unit_iso_comp' := e_functor_unit_iso_comp'}.unit_iso | |
equivalence.refl.inverse)) | |
(iso_whisker_left | |
{functor := e_functor, | |
inverse := e_inverse, | |
unit_iso := e_unit_iso, | |
counit_iso := e_counit_iso, | |
functor_unit_iso_comp' := e_functor_unit_iso_comp'}.inverse | |
(iso_whisker_right equivalence.refl.counit_iso | |
{functor := e_functor, | |
inverse := e_inverse, | |
unit_iso := e_unit_iso, | |
counit_iso := e_counit_iso, | |
functor_unit_iso_comp' := e_functor_unit_iso_comp'}.functor) ≪≫ | |
{functor := e_functor, | |
inverse := e_inverse, | |
unit_iso := e_unit_iso, | |
counit_iso := e_counit_iso, | |
functor_unit_iso_comp' := e_functor_unit_iso_comp'}.counit_iso) = | |
e_unit_iso | |
α : Type u₁, | |
β : Type u₂, | |
_inst_1 : category α, | |
_inst_2 : category β, | |
e_functor : α ⥤ β, | |
e_inverse : β ⥤ α, | |
e_unit_iso : 𝟭 α ≅ e_functor ⋙ e_inverse, | |
e_counit_iso : e_inverse ⋙ e_functor ≅ 𝟭 β, | |
e_functor_unit_iso_comp' : | |
auto_param | |
(∀ (X : α), | |
e_functor.map (e_unit_iso.hom.app X) ≫ e_counit_iso.hom.app (e_functor.obj X) = 𝟙 (e_functor.obj X)) | |
(name.mk_string "obviously" name.anonymous) | |
⊢ iso_whisker_left | |
{functor := e_functor, | |
inverse := e_inverse, | |
unit_iso := e_unit_iso, | |
counit_iso := e_counit_iso, | |
functor_unit_iso_comp' := e_functor_unit_iso_comp'}.inverse | |
(iso_whisker_right equivalence.refl.counit_iso | |
{functor := e_functor, | |
inverse := e_inverse, | |
unit_iso := e_unit_iso, | |
counit_iso := e_counit_iso, | |
functor_unit_iso_comp' := e_functor_unit_iso_comp'}.functor) ≪≫ | |
{functor := e_functor, | |
inverse := e_inverse, | |
unit_iso := e_unit_iso, | |
counit_iso := e_counit_iso, | |
functor_unit_iso_comp' := e_functor_unit_iso_comp'}.counit_iso = | |
e_counit_iso |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment