Skip to content

Instantly share code, notes, and snippets.

@b-mehta
Created June 25, 2020 20:40
Show Gist options
  • Save b-mehta/1fc26da4107e2e3e440a530f288357cf to your computer and use it in GitHub Desktop.
Save b-mehta/1fc26da4107e2e3e440a530f288357cf to your computer and use it in GitHub Desktop.
Freeze display
Tactic State
4 goals
α : Type u₁,
β : Type u₂,
_inst_1 : category α,
_inst_2 : category β,
e_functor : α ⥤ β,
e_inverse : β ⥤ α,
e_unit_iso : 𝟭 α ≅ e_functor ⋙ e_inverse,
e_counit_iso : e_inverse ⋙ e_functor ≅ 𝟭 β,
e_functor_unit_iso_comp' :
auto_param
(∀ (X : α),
e_functor.map (e_unit_iso.hom.app X) ≫ e_counit_iso.hom.app (e_functor.obj X) = 𝟙 (e_functor.obj X))
(name.mk_string "obviously" name.anonymous)
⊢ 𝟭 α ⋙ e_functor = e_functor
α : Type u₁,
β : Type u₂,
_inst_1 : category α,
_inst_2 : category β,
e_functor : α ⥤ β,
e_inverse : β ⥤ α,
e_unit_iso : 𝟭 α ≅ e_functor ⋙ e_inverse,
e_counit_iso : e_inverse ⋙ e_functor ≅ 𝟭 β,
e_functor_unit_iso_comp' :
auto_param
(∀ (X : α),
e_functor.map (e_unit_iso.hom.app X) ≫ e_counit_iso.hom.app (e_functor.obj X) = 𝟙 (e_functor.obj X))
(name.mk_string "obviously" name.anonymous)
⊢ {functor := e_functor,
inverse := e_inverse,
unit_iso := e_unit_iso,
counit_iso := e_counit_iso,
functor_unit_iso_comp' := e_functor_unit_iso_comp'}.inverse ⋙
equivalence.refl.inverse =
e_inverse
α : Type u₁,
β : Type u₂,
_inst_1 : category α,
_inst_2 : category β,
e_functor : α ⥤ β,
e_inverse : β ⥤ α,
e_unit_iso : 𝟭 α ≅ e_functor ⋙ e_inverse,
e_counit_iso : e_inverse ⋙ e_functor ≅ 𝟭 β,
e_functor_unit_iso_comp' :
auto_param
(∀ (X : α),
e_functor.map (e_unit_iso.hom.app X) ≫ e_counit_iso.hom.app (e_functor.obj X) = 𝟙 (e_functor.obj X))
(name.mk_string "obviously" name.anonymous)
⊢ equivalence.adjointify_η
(equivalence.refl.unit_iso ≪≫
iso_whisker_left equivalence.refl.functor
(iso_whisker_right
{functor := e_functor,
inverse := e_inverse,
unit_iso := e_unit_iso,
counit_iso := e_counit_iso,
functor_unit_iso_comp' := e_functor_unit_iso_comp'}.unit_iso
equivalence.refl.inverse))
(iso_whisker_left
{functor := e_functor,
inverse := e_inverse,
unit_iso := e_unit_iso,
counit_iso := e_counit_iso,
functor_unit_iso_comp' := e_functor_unit_iso_comp'}.inverse
(iso_whisker_right equivalence.refl.counit_iso
{functor := e_functor,
inverse := e_inverse,
unit_iso := e_unit_iso,
counit_iso := e_counit_iso,
functor_unit_iso_comp' := e_functor_unit_iso_comp'}.functor) ≪≫
{functor := e_functor,
inverse := e_inverse,
unit_iso := e_unit_iso,
counit_iso := e_counit_iso,
functor_unit_iso_comp' := e_functor_unit_iso_comp'}.counit_iso) =
e_unit_iso
α : Type u₁,
β : Type u₂,
_inst_1 : category α,
_inst_2 : category β,
e_functor : α ⥤ β,
e_inverse : β ⥤ α,
e_unit_iso : 𝟭 α ≅ e_functor ⋙ e_inverse,
e_counit_iso : e_inverse ⋙ e_functor ≅ 𝟭 β,
e_functor_unit_iso_comp' :
auto_param
(∀ (X : α),
e_functor.map (e_unit_iso.hom.app X) ≫ e_counit_iso.hom.app (e_functor.obj X) = 𝟙 (e_functor.obj X))
(name.mk_string "obviously" name.anonymous)
⊢ iso_whisker_left
{functor := e_functor,
inverse := e_inverse,
unit_iso := e_unit_iso,
counit_iso := e_counit_iso,
functor_unit_iso_comp' := e_functor_unit_iso_comp'}.inverse
(iso_whisker_right equivalence.refl.counit_iso
{functor := e_functor,
inverse := e_inverse,
unit_iso := e_unit_iso,
counit_iso := e_counit_iso,
functor_unit_iso_comp' := e_functor_unit_iso_comp'}.functor) ≪≫
{functor := e_functor,
inverse := e_inverse,
unit_iso := e_unit_iso,
counit_iso := e_counit_iso,
functor_unit_iso_comp' := e_functor_unit_iso_comp'}.counit_iso =
e_counit_iso
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment