Created
December 13, 2013 05:17
-
-
Save azymnis/7940080 to your computer and use it in GitHub Desktop.
Approximate item similarity using LSH in Scalding.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import com.twitter.scalding._ | |
import com.twitter.algebird.{ MinHasher, MinHasher32, MinHashSignature } | |
/** | |
* Computes similar items (with a string itemId), based on approximate | |
* Jaccard similarity, using LSH. | |
* | |
* Assumes an input data TSV file of the following format: | |
* | |
* itemId userId | |
* | |
* Generates an output file of the following format: | |
* | |
* itemId similarItemId | |
* | |
* Input arguments: | |
* --input location of input file | |
* --output location of output file | |
* --num_hashes number of hash functions to use, more means | |
* higher complexity, but higher accuracy | |
* --target_threshold minimum Jaccard similarity above which two | |
* items are considered similar | |
* | |
*/ | |
class ItemSimilarity(args: Args) extends Job(args) { | |
import TDsl._ | |
val targetThreshold = args.optional("target_threshold") | |
.map { _.toDouble }.getOrElse(0.8) | |
val numHashes = args.optional("num_hashes") | |
.map { _.toInt }.getOrElse(50) | |
val numBands = MinHasher.pickBands(targetThreshold, numHashes) | |
implicit lazy val minHasher = new MinHasher32(numHashes, numBands) | |
TypedTsv[(String, Long)](args("input")) | |
// First generate minhash signatures | |
.map { case (itemId, userId) => (itemId, minHasher.init(userId)) } | |
.group[String, MinHashSignature] | |
.sum | |
// Now generate bands of similar books and aggregate | |
.flatMap { case (itemId, sig) => | |
minHasher.buckets(sig).zipWithIndex.map { case (bucket, ind) => | |
((bucket, ind), Set((itemId, sig))) | |
} | |
} | |
.group[(Long, Int), Set[(String, MinHashSignature)]] | |
.sum | |
// Now expand all pairs of similar books | |
.flatMap { case (_, itemIdSet) => | |
for { | |
(itemId1, sig1) <- itemIdSet | |
(itemId2, sig2) <- itemIdSet | |
sim = minHasher.similarity(sig1, sig2) | |
if (itemId1 != itemId2 && sim >= targetThreshold) | |
} yield (itemId1, itemId2) | |
} | |
.distinct | |
.write(TypedTsv[(String, String)](args("output"))) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment