Last active
March 12, 2019 19:05
-
-
Save astrojuanlu/e4d47fec5d94d2224762a61680419eb2 to your computer and use it in GitHub Desktop.
How to do time derivatives of a pandas Series using NumPy 1.13 gradient
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
%matplotlib inline | |
import matplotlib.pyplot as plt | |
# Base time series | |
base_t = pd.date_range("2017-07-20 11:00", "2017-07-20 12:00", freq="T") | |
# We add some random noise to achieve non uniform spacing | |
t = base_t + pd.to_timedelta(5 * np.random.randn(len(base_t)), unit='s') | |
assert t.is_monotonic_increasing | |
# Extract numerical values | |
values = (t - t[0]).total_seconds() | |
# My function | |
y = pd.Series(np.cos(0.1 * values)) | |
# Derivative! Requires NumPy >= 1.13 | |
# https://docs.scipy.org/doc/numpy/reference/generated/numpy.gradient.html#numpy.gradient | |
dy = np.gradient(y, values) | |
# Plotting | |
fig, ax = plt.subplots(2, sharex=True, figsize=(6, 6)) | |
ax[0].plot(t, y) | |
ax[1].plot(t, dy, color="C1") |
Author
astrojuanlu
commented
Jul 21, 2017
•
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment