Created
June 3, 2016 16:27
-
-
Save armhold/4523f5073c5ee6f1a8751cd8ad3c7029 to your computer and use it in GitHub Desktop.
tuning hyperparameters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
best_model = None | |
best_val_acc = 0 | |
best_lr = None | |
num_trials=10 | |
for trial in range(num_trials): | |
# best so far is 2.74799e-4, aka 10 ** -3.5609848520174077 | |
#lr_exp = np.random.uniform(-5, 2) | |
lr_exp = np.random.uniform(-3.65, -3.2) | |
lr = 10 ** lr_exp | |
reg_exp = np.random.uniform(-5.02, -4.4) # (-5.6, -5.5) | |
reg = 10 ** reg_exp | |
weight_scale_exp = np.random.uniform(-1.8, -1.31) | |
weight_scale = 10 ** weight_scale_exp # orig: 5e-2 | |
model = GeorgeNet(num_convnets=2, num_affine=2, | |
hidden_dim=100, # default: 500 | |
weight_scale=weight_scale, | |
use_batchnorm=True, | |
reg=reg) | |
num_epochs = 1 # orig: 5 | |
solver = Solver(model, data, | |
num_epochs=num_epochs, batch_size=100, | |
update_rule='adam', | |
optim_config={ | |
'learning_rate': lr | |
}, | |
verbose=False) | |
solver.train() | |
print "trial: %d, lr_exp: %g, reg_exp: %g, weight_scale_exp: %g, val_acc: %g" % (trial, lr_exp, reg_exp, weight_scale_exp, solver.best_val_acc) | |
if solver.best_val_acc > best_val_acc: | |
best_model = model | |
best_val_acc = solver.best_val_acc | |
best_lr = lr | |
print "best_val_acc: ", best_val_acc | |
print "best_lr: ", best_lr | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment