Created
July 4, 2018 19:24
-
-
Save ardamavi/b597e6a7e616819a1adce7c1138b5f19 to your computer and use it in GitHub Desktop.
3D U-Net Model
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def get_3d_u_net(data_shape): | |
inputs = Input(shape=(data_shape)) | |
conv_block_1 = Conv3D(32, (3, 3, 3), strides=(1, 1, 1), padding='same')(inputs) | |
conv_block_1 = Activation('relu')(conv_block_1) | |
conv_block_1 = Conv3D(32, (3, 3, 3), strides=(1, 1, 1), padding='same')(conv_block_1) | |
conv_block_1 = Activation('relu')(conv_block_1) | |
pool_block_1 = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2))(conv_block_1) | |
conv_block_2 = Conv3D(64, (3, 3, 3), strides=(1, 1, 1), padding='same')(pool_block_1) | |
conv_block_2 = Activation('relu')(conv_block_2) | |
conv_block_2 = Conv3D(64, (3, 3, 3), strides=(1, 1, 1), padding='same')(conv_block_2) | |
conv_block_2 = Activation('relu')(conv_block_2) | |
pool_block_2 = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2))(conv_block_2) | |
conv_block_3 = Conv3D(128, (3, 3, 3), strides=(1, 1, 1), padding='same')(pool_block_2) | |
conv_block_3 = Activation('relu')(conv_block_3) | |
conv_block_3 = Conv3D(128, (3, 3, 3), strides=(1, 1, 1), padding='same')(conv_block_3) | |
conv_block_3 = Activation('relu')(conv_block_3) | |
pool_block_3 = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2))(conv_block_3) | |
conv_block_4 = Conv3D(256, (3, 3, 3), strides=(1, 1, 1), padding='same')(pool_block_3) | |
conv_block_4 = Activation('relu')(conv_block_4) | |
conv_block_4 = Conv3D(256, (3, 3, 3), strides=(1, 1, 1), padding='same')(conv_block_4) | |
conv_block_4 = Activation('relu')(conv_block_4) | |
pool_block_4 = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2))(conv_block_4) | |
conv_block_5 = Conv3D(256, (3, 3, 3), strides=(1, 1, 1), padding='same')(pool_block_4) | |
conv_block_5 = Activation('relu')(conv_block_5) | |
conv_block_5 = Conv3D(256, (3, 3, 3), strides=(1, 1, 1), padding='same')(conv_block_5) | |
conv_block_5 = Activation('relu')(conv_block_5) | |
up_block_1 = UpSampling3D((2, 2, 2))(conv_block_5) | |
up_block_1 = Conv3D(512, (3, 3, 3), strides=(1, 1, 1), padding='same')(up_block_1) | |
merge_1 = concatenate([conv_block_4, up_block_1]) | |
conv_block_6 = Conv3D(256, (3, 3, 3), strides=(1, 1, 1), padding='same')(merge_1) | |
conv_block_6 = Activation('relu')(conv_block_6) | |
conv_block_6 = Conv3D(256, (3, 3, 3), strides=(1, 1, 1), padding='same')(conv_block_6) | |
conv_block_6 = Activation('relu')(conv_block_6) | |
up_block_2 = UpSampling3D((2, 2, 2))(conv_block_6) | |
up_block_2 = Conv3D(256, (3, 3, 3), strides=(1, 1, 1), padding='same')(up_block_2) | |
merge_2 = concatenate([conv_block_3, up_block_2]) | |
conv_block_7 = Conv3D(128, (3, 3, 3), strides=(1, 1, 1), padding='same')(merge_2) | |
conv_block_7 = Activation('relu')(conv_block_7) | |
conv_block_7 = Conv3D(128, (3, 3, 3), strides=(1, 1, 1), padding='same')(conv_block_7) | |
conv_block_7 = Activation('relu')(conv_block_7) | |
up_block_3 = UpSampling3D((2, 2, 2))(conv_block_7) | |
up_block_3 = Conv3D(128, (3, 3, 3), strides=(1, 1, 1), padding='same')(up_block_3) | |
merge_3 = concatenate([conv_block_2, up_block_3]) | |
conv_block_8 = Conv3D(64, (3, 3, 3), strides=(1, 1, 1), padding='same')(merge_3) | |
conv_block_8 = Activation('relu')(conv_block_8) | |
conv_block_8 = Conv3D(64, (3, 3, 3), strides=(1, 1, 1), padding='same')(conv_block_8) | |
conv_block_8 = Activation('relu')(conv_block_8) | |
up_block_4 = UpSampling3D((2, 2, 2))(conv_block_8) | |
up_block_4 = Conv3D(32, (3, 3, 3), strides=(1, 1, 1), padding='same')(up_block_4) | |
merge_4 = concatenate([conv_block_1, up_block_4]) | |
conv_block_9 = Conv3D(64, (3, 3, 3), strides=(1, 1, 1), padding='same')(merge_4) | |
conv_block_9 = Activation('relu')(conv_block_9) | |
conv_block_9 = Conv3D(64, (3, 3, 3), strides=(1, 1, 1), padding='same')(conv_block_9) | |
conv_block_9 = Activation('relu')(conv_block_9) | |
conv_block_10 = Conv3D(data_shape[-1], (1, 1, 1), strides=(1, 1, 1), padding='same')(conv_block_9) | |
outputs = Activation('sigmoid')(conv_block_10) | |
model = Model(inputs=inputs, outputs=outputs) | |
try: | |
model = multi_gpu_model(model) | |
except: | |
pass | |
model.compile(optimizer = 'adadelta', loss=dice_coefficient_loss, metrics=[dice_coefficient]) | |
return model |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment