Created
June 27, 2018 12:13
-
-
Save ardamavi/2dd5886e241b3319b8b4ce5bcb6bd134 to your computer and use it in GitHub Desktop.
U-Net
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Arda Mavi | |
import os | |
from keras.models import Model | |
from keras.optimizers import Adam | |
from keras.models import model_from_json | |
from keras.layers import Input, Conv2D, UpSampling2D, Activation, MaxPooling2D, Flatten, Dense, concatenate, Dropout | |
def save_model(model, path='Data/Model/', model_name = 'model', weights_name = 'weights.h5'): | |
if not os.path.exists(path): | |
os.makedirs(path) | |
model_json = model.to_json() | |
with open(path+model+'.json', 'w') as model_file: | |
model_file.write(model_json) | |
# serialize weights to HDF5 | |
model.save_weights(path+weights_name+'.h5') | |
print('Model and weights saved to ' + path+model+'.json and' + path+weights_name+'.h5') | |
return | |
def get_model(model_path, weights_path): | |
if not os.path.exists(model_path): | |
print('Model file not exists!') | |
return None | |
elif not os.path.exists(weights_path): | |
print('Weights file not exists!') | |
return None | |
# Getting model: | |
with open(model_path, 'r') as model_file: | |
model = model_file.read() | |
model = model_from_json(model) | |
# Getting weights | |
model.load_weights(weights_path) | |
return model | |
def get_unet(data_shape): | |
inputs = Input(shape=(data_shape)) | |
conv_block_1 = Conv2D(32, (3, 3), strides=(1, 1), padding='same')(inputs) | |
conv_block_1 = Activation('relu')(conv_block_1) | |
conv_block_1 = Conv2D(32, (3, 3), strides=(1, 1), padding='same')(conv_block_1) | |
conv_block_1 = Activation('relu')(conv_block_1) | |
pool_block_1 = MaxPooling2D(pool_size=(2, 2), strides=(2, 2))(conv_block_1) | |
conv_block_2 = Conv2D(64, (3, 3), strides=(1, 1), padding='same')(pool_block_1) | |
conv_block_2 = Activation('relu')(conv_block_2) | |
conv_block_2 = Conv2D(64, (3, 3), strides=(1, 1), padding='same')(conv_block_2) | |
conv_block_2 = Activation('relu')(conv_block_2) | |
pool_block_2 = MaxPooling2D(pool_size=(2, 2), strides=(2, 2))(conv_block_2) | |
conv_block_3 = Conv2D(128, (3, 3), strides=(1, 1), padding='same')(pool_block_2) | |
conv_block_3 = Activation('relu')(conv_block_3) | |
conv_block_3 = Conv2D(128, (3, 3), strides=(1, 1), padding='same')(conv_block_3) | |
conv_block_3 = Activation('relu')(conv_block_3) | |
pool_block_3 = MaxPooling2D(pool_size=(2, 2), strides=(2, 2))(conv_block_3) | |
conv_block_4 = Conv2D(256, (3, 3), strides=(1, 1), padding='same')(pool_block_3) | |
conv_block_4 = Activation('relu')(conv_block_4) | |
conv_block_4 = Conv2D(256, (3, 3), strides=(1, 1), padding='same')(conv_block_4) | |
conv_block_4 = Activation('relu')(conv_block_4) | |
pool_block_4 = MaxPooling2D(pool_size=(2, 2), strides=(2, 2))(conv_block_4) | |
conv_block_5 = Conv2D(256, (3, 3), strides=(1, 1), padding='same')(pool_block_4) | |
conv_block_5 = Activation('relu')(conv_block_5) | |
conv_block_5 = Conv2D(256, (3, 3), strides=(1, 1), padding='same')(conv_block_5) | |
conv_block_5 = Activation('relu')(conv_block_5) | |
up_block_1 = UpSampling2D((2, 2))(conv_block_5) | |
up_block_1 = Conv2D(512, (3, 3), strides=(1, 1), padding='same')(up_block_1) | |
merge_1 = concatenate([conv_block_4, up_block_1]) | |
conv_block_6 = Conv2D(256, (3, 3), strides=(1, 1), padding='same')(merge_1) | |
conv_block_6 = Activation('relu')(conv_block_6) | |
conv_block_6 = Conv2D(256, (3, 3), strides=(1, 1), padding='same')(conv_block_6) | |
conv_block_6 = Activation('relu')(conv_block_6) | |
up_block_2 = UpSampling2D((2, 2))(conv_block_6) | |
up_block_2 = Conv2D(256, (3, 3), strides=(1, 1), padding='same')(up_block_2) | |
merge_2 = concatenate([conv_block_3, up_block_2]) | |
conv_block_7 = Conv2D(128, (3, 3), strides=(1, 1), padding='same')(merge_2) | |
conv_block_7 = Activation('relu')(conv_block_7) | |
conv_block_7 = Conv2D(128, (3, 3), strides=(1, 1), padding='same')(conv_block_7) | |
conv_block_7 = Activation('relu')(conv_block_7) | |
up_block_3 = UpSampling2D((2, 2))(conv_block_7) | |
up_block_3 = Conv2D(128, (3, 3), strides=(1, 1), padding='same')(up_block_3) | |
merge_3 = concatenate([conv_block_2, up_block_3]) | |
conv_block_8 = Conv2D(64, (3, 3), strides=(1, 1), padding='same')(merge_3) | |
conv_block_8 = Activation('relu')(conv_block_8) | |
conv_block_8 = Conv2D(64, (3, 3), strides=(1, 1), padding='same')(conv_block_8) | |
conv_block_8 = Activation('relu')(conv_block_8) | |
up_block_4 = UpSampling2D((2, 2))(conv_block_8) | |
up_block_4 = Conv2D(32, (3, 3), strides=(1, 1), padding='same')(up_block_4) | |
merge_4 = concatenate([conv_block_1, up_block_4]) | |
conv_block_9 = Conv2D(64, (3, 3), strides=(1, 1), padding='same')(merge_4) | |
conv_block_9 = Activation('relu')(conv_block_9) | |
conv_block_9 = Conv2D(64, (3, 3), strides=(1, 1), padding='same')(conv_block_9) | |
conv_block_9 = Activation('relu')(conv_block_9) | |
conv_block_10 = Conv2D(data_shape[-1], (1, 1), strides=(1, 1), padding='same')(conv_block_9) | |
outputs = Activation('sigmoid')(conv_block_10) | |
model = Model(inputs=inputs, outputs=outputs) | |
model.compile(optimizer = Adam(lr = 1e-4), loss = 'binary_crossentropy', metrics = ['accuracy']) | |
return model | |
if __name__ == '__main__': | |
model = get_unet((1024,1024,1)) | |
print(model.summary()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment