Last active
October 29, 2017 13:09
-
-
Save ardamavi/1afc1eb4984d17eafdae29a02f022eda to your computer and use it in GitHub Desktop.
Neuron with Tensorflow
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Arda Mavi | |
# github.com/ardamavi | |
import tensorflow as tf | |
# Inputs: | |
x = tf.placeholder(tf.float32, [None, 2]) | |
y = tf.placeholder(tf.float32, [None, 1]) | |
# Weight: | |
w = tf.Variable(tf.random_normal([2,1]), dtype=tf.float32) | |
# Bias: | |
b = tf.Variable(tf.random_normal([1]), dtype=tf.float32, trainable=False) | |
# Relu: | |
pred = tf.nn.relu(tf.add(tf.matmul(x,w), b)) | |
# Loss: | |
loss = tf.losses.mean_squared_error(pred, y) | |
# Optimizer: | |
learning_rate = 0.001 | |
opt = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss) | |
init = tf.global_variables_initializer() | |
X_train, Y_train = # Data | |
epochs = 100 | |
bach_size = 5 | |
with tf.Session() as sess: | |
sess.run(init) | |
for epoch in range(epochs): | |
for (bach_x, bach_y) in zip(X_train[epoch*bach_size:(epoch+1)*bach_size], Y_train[epoch*bach_size:(epoch+1)*bach_size]): | |
sess.run(opt, feed_dict={x:[bach_x], y:[bach_y]}) | |
c = sess.run(loss, feed_dict={x:X_train, y:Y_train}) | |
print("Epoch:", '%04d' % (epoch+1), "Loss=", "{:.4f}".format(c)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment