Last active
May 6, 2020 08:54
-
-
Save antorsae/2328bf9306e36725442c1840be6f3973 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Keras layer implementation of "Fix your classifier: the marginal value of training the last weight layer" | |
# by Andres Torrubia, licensed under GPL 3: https://www.gnu.org/licenses/gpl-3.0.en.html | |
# https://arxiv.org/abs/1801.04540 | |
from keras import backend as K | |
from keras.engine.topology import Layer | |
from keras import activations | |
from keras.initializers import Constant, RandomUniform | |
import numpy as np | |
from scipy.linalg import hadamard | |
import math | |
class HadamardClassifier(Layer): | |
def __init__(self, output_dim, activation=None, use_bias=True, | |
l2_normalize=True, output_raw_logits=False, **kwargs): | |
self.output_dim = output_dim | |
self.activation = activations.get(activation) | |
self.use_bias = use_bias | |
self.l2_normalize = l2_normalize | |
self.output_raw_logits = output_raw_logits | |
super(HadamardClassifier, self).__init__(**kwargs) | |
def build(self, input_shape): | |
hadamard_size = 2 ** int(math.ceil(math.log(max(input_shape[1], self.output_dim), 2))) | |
self.hadamard = K.constant( | |
value=hadamard(hadamard_size, dtype=np.int8)[:input_shape[1], :self.output_dim]) | |
init_scale = 1. / math.sqrt(self.output_dim) | |
self.scale = self.add_weight(name='scale', | |
shape=(1,), | |
initializer=Constant(init_scale), | |
trainable=True) | |
if self.use_bias: | |
self.bias = self.add_weight(name='bias', | |
shape=(self.output_dim,), | |
initializer=RandomUniform(-init_scale, init_scale), | |
trainable=True) | |
super(HadamardClassifier, self).build(input_shape) | |
def call(self, x, training=None): | |
is_training = training not in {0, False} | |
output = K.l2_normalize(x, axis=-1) if self.l2_normalize else x | |
output = -self.scale * K.dot(output, self.hadamard) # pity .dot requires both tensors to be same type, the last one could be int8 | |
if self.output_raw_logits: | |
output_logits = -self.scale * K.dot(x, self.hadamard) # probably better to reuse output * l2norm | |
if self.use_bias: | |
output = K.bias_add(output, self.bias) | |
if self.output_raw_logits: | |
output_logits = K.bias_add(output_logits, self.bias) | |
if self.activation is not None: | |
output = self.activation(output) | |
if self.output_raw_logits: | |
return [output, output_logits] | |
return output | |
def compute_output_shape(self, input_shape): | |
if self.output_raw_logits: | |
return [(input_shape[0], self.output_dim)] * 2 | |
return (input_shape[0], self.output_dim) | |
def get_config(self): | |
config = { | |
'output_dim': self.output_dim, | |
'activation': activations.serialize(self.activation), | |
'use_bias': self.use_bias, | |
'l2_normalize': self.l2_normalize, | |
'output_raw_logits' : self.output_raw_logits, | |
} | |
base_config = super(HadamardClassifier, self).get_config() | |
return dict(list(base_config.items()) + list(config.items())) |
No. I've since moved to pytorch.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hello,
is this up to date with the latest Keras version?
Thank you.