Created
March 15, 2013 15:03
-
-
Save anonymous/5170482 to your computer and use it in GitHub Desktop.
Do file to check consistency of figures/statistics presented in Dupas & Robinson (2013) against what appears in the data
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
*************************************************************************************************** | |
/* Do file to check consistency of figures/statistics presented in Dupas & Robinson (2013) against | |
what appears in the data */ | |
*************************************************************************************************** | |
clear | |
set mem 500m | |
* set directory | |
gl DRIVE "/Users/katiacovarrubias/Documents/Academic/IHEID/Courses/Advanced Econometrics/Exam/Dupas_data/" | |
* log file | |
capture log close | |
log using "$DRIVE/dupas_consistencycheck.log",replace | |
* load data and run variable creation from their do file | |
use "$DRIVE/dataset_savingsAEJ.dta",clear | |
********************************************************* | |
*Variable creation from dupas do file | |
* Active if had more than one bank transaction in first 6 months | |
gen active=(first6_num_trans_savings>1) if first6_num_trans_savings!=. | |
* Treatment interacted with works as boda-boda dummy | |
gen treatment_bg_boda=treatment*bg_boda | |
* Active bank account interacted with works as boda-boda dummy | |
gen active_bg_boda=active*bg_boda | |
* Works as boda-boda and sampled at wave 2 | |
gen bg_boda_wave2=bg_boda & wave2 | |
* Works as male vendor and sampled at wave 2 | |
gen bg_malevendor_wave2=bg_malevendor & wave2 | |
* Works as male vendor and sampled at wave 3 | |
gen bg_malevendor_wave3=bg_malevendor & wave3 | |
* Treatment interacted with works as male vendor | |
gen treatment_bg_malevendor=treatment*bg_malevendor | |
* Active bank account interacted with works as male vendor | |
gen active_bg_malevendor=active*bg_malevendor | |
* literacy var | |
gen literate_swahili=1 if bg_kis_read==1 & bg_kis_write==1 | |
replace literate_swahili=0 if bg_kis_read==0 | bg_kis_write==0 | |
***************************************************************************** | |
* PAGE 166 | |
sum investment | |
* 353 Ksh | |
sum investment if investment!=0 | |
* 365 Ksh | |
sum investment if !(wave1==. & wave2==. & wave3==.) | |
* 353 Ksh | |
sum investment if !(wave1==. & wave2==. & wave3==.) & investment !=0 | |
* 365 Ksh | |
tab bg_loan_bank if !(wave1==. & wave2==. & wave3==.) | |
* 2.8 percent | |
tab bg_loan_bank if !(wave1==. & wave2==. & wave3==.) & not_trac==0 | |
* 3.26 percent if only consider individuals that were able to be tracked down. | |
***************************************************************************** | |
* page 167 | |
tab per_hard_save if !(wave1==. & wave2==. & wave3==.) | |
* 85.62% (125 obs) | |
tab per_hard_save | |
* 85.71% (126) | |
***************************************************************************** | |
* PAGE 168 | |
* explore number of observations in male bicycle taxi drivers (92 OR 96?) | |
***************************************************************************** | |
* PAGE 169 | |
g illiterate=literate==0 | |
table bg_gender if inlog==1 , c(mean illiterate) | |
* 7.5% males; 34.1% females | |
sum exp_total if inlog==1 | |
display 50/r(mean) | |
* 28.97% | |
***************************************************************************** | |
* PAGE 170 | |
g logrefuse=inlog==0 | |
table not_traced_acco, c(mean inlog mean logref) row | |
* 28.9% overall | |
count if per_hard_save!=. & per_invest_choice2!=. & per_somewhat_patient!=. & per_time_consistent!=. & per_hyperbolic!=. & per_pat_now_impat_later!=. & per_maximpat!=. | |
* 143 obs | |
***************************************************************************** | |
* PAGE 173 | |
tab num_dep_sav if (treatment==1 & not_traced_account_opening==0) ,m | |
* 10 missing obs (6.4%), 72 zeroes (46%) | |
***************************************************************************** | |
* PAGE 174 | |
* median deposits for both genders | |
sum first6_dep_savings if treatment==1 & wave1!=. & wave2!=. & wave3!=. , det | |
display r(p50) /*0*/ | |
*75th and 90th percentile of total deposits- males | |
sum first6_dep_savings if treatment==1 & bg_gender==1 & wave1!=. & wave2!=. & wave3!=. , det | |
display r(p75) /*300*/ | |
display r(p90) /*1200*/ | |
*75th and 90th percentile of total deposits- females | |
sum first6_dep_savings if treatment==1 & bg_gender==0 & wave1!=. & wave2!=. & wave3!=. , det | |
display r(p75) /*500*/ | |
display r(p90) /*5000*/ | |
* Mean deposits across gender | |
table bg_gender if treatment==1 & wave1!=. & wave2!=. & wave3!=. , c(mean first6_dep_savings) | |
***************************************************************************** | |
* PAGE 176 | |
tab active if treatment==1 | |
tab active if treatment==1 & filled_log !=. & filled_log !=0 | |
***************************************************************************** | |
* PAGE 187 | |
* check median of average deposit size | |
* From D&R do file: Average deposit size is total of all deposits ever made/total number of deposits ever made | |
gen size_deposit=total_dep_savings/num_dep_savings | |
sum size_deposit, detail | |
sum size_deposit if active==1, detail | |
display r(p50) | |
* median= 300 Ksh | |
* for active women: | |
sum size_deposit if active==1 & bg_gender==0, detail | |
display r(p50) | |
* median=588.8889 | |
* this median should be equivalent to 1.6 days of mean expenditures for women in the sample | |
sum exp_total if active==1 & bg_gender==0, detail | |
display 588.8889/r(mean) /*2.41 times average daily expenditure for active women*/ | |
display 300/r(mean) /*1.23 times average daily expenditure for active women*/ | |
sum exp_total if bg_gender==0, detail | |
display 588.8889/r(mean) /*3.25 times average daily expenditure for women*/ | |
display 300/r(mean) /*1.65 times average daily expenditure for women*/ | |
***************************************************************************** | |
* EXTRA: Check trimming | |
count if filled_log!=0 & filled_log!=. | |
list investment* bg_boda bg_malevendor bg_femalevendor if filled_log!=0 & filled_log!=. & (investment!=investment_t5), separator(0) | |
count if filled_log!=0 & filled_log!=. & (investment!=investment_t5) | |
* 36 obs (14%) | |
list revenues* bg_boda bg_malevendor bg_femalevendor if filled_log!=0 & filled_log!=. & (revenues!=revenues_t5), separator(0) | |
count if filled_log!=0 & filled_log!=. & (revenues!=revenues_t5) | |
* 46 obs (18.4%) | |
* it seems that trimming was not on the overall sample, but for each individual's records | |
***************************************************************************** | |
log close | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment