Created
May 26, 2020 14:21
-
-
Save amn41/af13d8c8588cf942a31afa15bcfddcd9 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import streamlit as st | |
import numpy as np | |
import pandas as pd | |
import json | |
import requests | |
@st.cache | |
def get_auth_token(host, user, pw): | |
st.write("cache miss token!") | |
url = f"{host}/api/auth" | |
payload = {"username": user, "password": pw} | |
response = requests.post(url, json=payload) | |
try: | |
token = response.json()["access_token"] | |
return token | |
except: | |
return None | |
@st.cache | |
def get_logs(host, token, limit=1000): | |
st.write("cache miss logs!") | |
url = f"{host}/api/projects/default/logs?exclude_training_data=false&limit={limit}" | |
headers = {"Authorization": f"Bearer {token}"} | |
try: | |
data = requests.get(url, headers=headers).json() | |
return data | |
except: | |
return None | |
@st.cache | |
def get_nlu_data(host, token, limit=100): | |
st.write("cache miss data!") | |
url = f"{host}/api/projects/default/data" | |
headers = {"Authorization": f"Bearer {token}"} | |
try: | |
data = requests.get(url, headers=headers).json() | |
return data | |
except: | |
return None | |
@st.cache | |
def combine_predictions_with_gold_labels(predictions, nlu_data): | |
st.write("cache miss combine!") | |
messages = {} | |
for p in predictions: | |
text = p["user_input"]["text"] | |
predicted_intent = p["user_input"]["intent"]["name"] | |
if text not in messages: | |
messages[text] = { | |
"model": p["model"], | |
"predicted_intent": predicted_intent, | |
"gold_intent": None, | |
"class": "UNK" | |
} | |
for d in nlu_data: | |
text = d["text"] | |
gold_intent = d["intent"] | |
if text in messages: | |
predicted = messages[text]["predicted_intent"] | |
messages[text]["gold_intent"] = gold_intent | |
messages[text]["class"] = "true_pos" if gold_intent == predicted else "false_pos" | |
intents = list(set([m["predicted_intent"] for m in messages.values()])) | |
classes = ["true_pos", "false_pos", "UNK"] | |
shape = (len(intents),len(classes)) | |
counts = np.zeros(shape) | |
for t, m in messages.items(): | |
i = intents.index(m["predicted_intent"]) | |
j = classes.index(m["class"]) | |
counts[i, j] += 1 | |
data = pd.DataFrame( | |
np.array(counts), | |
columns=classes, index=intents) | |
return data | |
############################################################## | |
# # | |
# STREAMLIT WADDUP # | |
# # | |
############################################################## | |
st.title("NLU prediction performance") | |
host = st.text_input('hostname', 'http://') | |
user = st.text_input('user', 'me') | |
pw = st.text_input('password', '13583754de25e3') | |
token = get_auth_token(host, user, pw) | |
st.subheader("Training data") | |
nlu_data = get_nlu_data(host, token) | |
st.subheader("NLU Predictions") | |
limit = st.number_input("Number of predictions to fetch", value=1000) | |
predictions = get_logs(host, token, limit=limit) | |
st.subheader("Intent classification") | |
predictions_with_gold_labels = combine_predictions_with_gold_labels(predictions, nlu_data) | |
n_intents = st.number_input("Number of intents to show", value=10) | |
order = st.selectbox("Order by:", ["UNK", "false_pos", "true_pos"], index=0) | |
data = predictions_with_gold_labels.nlargest(n_intents, order) | |
models = ["20200429-133947", | |
"20200429-133720", | |
"20200429-114937", | |
"20200429-103348", | |
"20200422-115149"] | |
options = st.multiselect( | |
'Models', | |
models, | |
models) | |
st.write(data) | |
annotations = data.drop(columns="UNK") | |
st.bar_chart(annotations) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment