Created
July 31, 2017 14:20
-
-
Save amn41/0a3556e79d177ad5e0ce5fd84afe9f59 to your computer and use it in GitHub Desktop.
read rasa nlu logs, optionally reprocess, and dump to file
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import unicode_literals | |
from __future__ import print_function | |
from __future__ import division | |
from __future__ import absolute_import | |
from builtins import str as text | |
import argparse | |
import io | |
import json | |
from rasa_nlu.converters import load_data | |
from rasa_nlu.model import Metadata, Interpreter | |
def create_argparser(): | |
parser = argparse.ArgumentParser( | |
description='Process logs from Rasa NLU server. If a model dir is specified, ' + | |
'load that model and re-do the predictions. Sort by intent confidence, ' + | |
'and output the data in the rasa json format for training data' | |
) | |
parser.add_argument('-m', '--model_dir', default=None, | |
help='dir containing model (optional)') | |
parser.add_argument('-l', '--log_file', | |
help='file or dir containing training data') | |
parser.add_argument('-o', '--out_file', | |
help='file where to save the logs in rasa format') | |
return parser | |
def process_logs(model_dir, log_file, out_file): | |
logged_predictions = [ | |
json.loads(l) for l in io.open(log_file).readlines() | |
] | |
if model_dir is not None: | |
# load model & its training data | |
metadata = Metadata.load(model_directory) | |
interpreter = Interpreter.load(metadata, RasaNLUConfig()) | |
training_data = load_data(interpreter.config["training_data"]).training_examples | |
logged_texts = set([t["text"] for t in logged_predictions]) | |
# dedupe & create test set | |
train_texts = set([t['text'] for t in training_data]) | |
test_texts = logged_texts.difference(train_texts) | |
# predict on test set | |
predictions = [interpreter.parse(t) for t in test_texts] | |
else: | |
predictions = logged_predictions | |
predictions = [p for p in predictions if p.get("user_input").get("intent_ranking") is not None] | |
predictions.sort(key=lambda p:p["user_input"]["intent"]["confidence"]) | |
preds = [ | |
{ | |
"intent": p["user_input"]["intent"]["name"], | |
"entities": p["user_input"]["entities"], | |
"text": p["user_input"]["text"] | |
} | |
for p in predictions | |
] | |
data = {"rasa_nlu_data": {"common_examples": preds } } | |
# persist | |
with io.open(out_file, "w") as f: | |
f.write(text(json.dumps(data, indent=2))) | |
if __name__ == "__main__": | |
parser = create_argparser() | |
args = parser.parse_args() | |
process_logs(args.model_dir, args.log_file, args.out_file) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment