Skip to content

Instantly share code, notes, and snippets.

class Base(object):
def __init__(self, a):
self._a = a
class Derived(Base):
def __init__(self, a={"a": 3}, b=10):
super().__init__(a)
self._b = b
def update_a(self, a):
tf.reset_default_graph()
input_image = tf.placeholder(tf.float32, shape=[X_train_prep.shape[0], X_train_prep.shape[1]])
U = tf.Variable(tf.truncated_normal([X_train_prep.shape[0], hidden_dim], stddev=0.01), name="U")
V = tf.Variable(tf.truncated_normal([hidden_dim, initial_dim], stddev=0.01), name="V")
approximation_loss = tf.sqrt(tf.reduce_sum(tf.square(tf.sub(input_image, tf.matmul(U, V)))))
# Define optimizer and other constants
init = tf.initialize_all_variables()
sess = tf.InteractiveSession()
def get_P(n):
val = [1, 2, 1] * (n / 2)
col = []
for i in xrange(n / 2):
col += 3*[i]
row = []
for j in xrange((n-1)/2):
row += range(2*j, 2*j + 3)
P = scsp.csr_matrix((val, (row, col)), shape=(n, (n-1)/2))
return 0.5 * P
k = 256 #number of clusters
c = 4 #number of subspaces
R = np.eye(m, m)
opq_codes = np.zeros((n, c))
opq_centroids = np.zeros((k, m/c, c))
iterations = 30
for it in xrange(iterations):
print "Num iter", it
mod_X = np.dot(X, R)
opq_Y = np.zeros((n, m))
def compute_grad_metric(w, x1, x2, label1, label2):
y = label1 == label2
dx = (x1 - x2).reshape(64, 1)
mod_x = w.dot(dx)
if y:
return 2 * np.dot(w, np.dot(dx, dx.T))
elif (1 - np.dot(mod_x.T, mod_x) > 0):
return -2 * np.dot(w, np.dot(dx, dx.T))
else:
# First variant
term_1 = x
for k in xrange(2):
print "Num iteration", k
Wx = x
for i in xrange(k+1):
Wx = W.dot(Wx)
WTWx = Wx
for i in xrange(k+1):
WTWx = W.T.dot(WTWx)
def process_line(line, t2i, i2t, outfile):
'''
Find all person's ID, They have to link to the category
'Living_people'
'''
pattern = "\((\d+),'(.*?)',(.*?)\)"
current_page = None
for match in finditer(pattern, line):
topage, category, t = match.groups()
if category == "Living_people":
# First version: len(person_id) = 15352
person_id = {}
with open(in_dir + 'ID-title_dict.pickle', 'rb') as f:
id2title = cPickle.load(f)
with open(in_dir + 'person_id.txt') as f:
for p_id in f:
try:
t = id2title[int(p_id)]
person_id[int(p_id)] = 0
except KeyError:
class MyVector {
int* vector;
int size;
public:
MyVector() : vector(new int[1]), size(1) { }
MyVector(int size) {
vector = new int[size];
this->size = size;
}
MyVector(int size, int num) {