Created
June 19, 2020 09:08
-
-
Save aliwaqas333/1cdc93265849129e7cd85780705bcf8e to your computer and use it in GitHub Desktop.
This class is used to extract images from various directories
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
REBUILD_DATA = True | |
if REBUILD_DATA: #if we are running it for the first time | |
data_path = Path('F:/FILES/AI/face-mask-dataset/') | |
maskPath = data_path/'dataset1/AFDB_masked_face_dataset' | |
maskPath2= data_path/'dataset2/webface_masked' | |
nonMaskPath = data_path/'dataset1/AFDB_face_dataset' | |
path_dirs = [ [maskPath,1],[nonMaskPath,0] ] #path and label | |
if not os.path.exists(data_path): | |
raise Exception("The data path doesn't exist") | |
class MaskvNoMask(): | |
IMG_SIZE = 100 | |
LABELS = {'NON_MASKED': 0, 'MASKED': 1} | |
training_data = [] # We will append one image at a time | |
def make_training_data(self): | |
for data_dir, label in path_dirs: | |
print('Reading from: ',label) | |
for folder in tqdm(os.listdir(data_dir)): | |
folder_path = os.path.join(data_dir, folder) | |
for imgpath in os.listdir(folder_path): | |
self.count += 1 | |
img_path = os.path.join(folder_path, imgpath) | |
try: # putting this in try block will help to avoid corrupt image files | |
img = cv2.imread(img_path) | |
img = cv2.resize(img, (self.IMG_SIZE,self.IMG_SIZE)) | |
self.training_data.append([np.array(img), label]) # adding image to train data | |
if label == 1: | |
self.LABELS['MASKED'] += 1 # counting number of masked images | |
if label == 0: | |
self.LABELS['NON_MASKED'] +=1 | |
except: | |
# raise Exception('error: {}'.format(img_path)) | |
pass | |
print(self.LABELS) | |
np.random.shuffle(self.training_data) | |
np.save("./npy/training_data.npy", self.training_data) # saving the numpy array so we dont have to read it again, its a lengthy process to read images from disk. | |
if REBUILD_DATA: | |
maskvnomask = MaskvNoMask() | |
maskvnomask.make_training_data() | |
training_data = maskvnomask.training_data | |
else: | |
training_data = np.load('./npy/training_data.npy', allow_pickle=True) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment