Created
August 22, 2010 19:59
Revisions
-
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,61 @@ class OnlineLearner(object): def __init__(self, **kwargs): self.last_misses = 0. self.iratio = 0. self.it = 1. self.l = kwargs["l"] self.max_ratio = -np.inf self.threshold = 500. def hinge_loss(self, vector, cls, weight): p = self.predict(vector) hl = max(0, weight-cls*p) if hl >= weight: self.last_misses += 1. ir = hl/weight self.iratio += ir if self.max_ratio < ir: self.max_ratio = ir self.it += 1 if self.it % self.threshold == 0: print str(type(self).__name__), print "l", self.last_misses/self.threshold, "r", self.iratio/self.threshold, print "m", self.max_ratio self.max_ratio = self.last_misses = self.iratio = 0 return hl class Pegasos(OnlineLearner): def __init__(self, **kwargs): super(Pegasos, self).__init__(**kwargs) self.w = Z(kwargs["dim"], dtype=np.float32) self.learn = True def update(self, vector, cls, weight): eta_t = 1./(self.l*self.it) loss = self.hinge_loss(vector, cls, weight) if not self.learn: return if loss > 0: self.w = (1-eta_t*self.l)*self.w + eta_t*cls*vector else: self.w = (1-eta_t*self.l)*self.w def predict(self, vector): return np.dot(vector, self.w) class KernelPegasos(OnlineLearner): def __init__(self, **kw): self.ws = [] self.y = [] super(KernelPegasos,self).__init__(**kw) self.k = kw["kernel"] self.learn = True def update(self, vector, cls, weight): loss = self.hinge_loss(vector, cls, weight) if not self.learn: pass if loss > 0: self.ws.append(vector) self.y.append(cls) def predict(self, v): return (1./(self.l*self.it))*sum(self.k(self.ws[i],v)*self.y[i] for i in xrange(len(self.ws)))