Created
October 22, 2011 00:19
-
-
Save alextp/1305323 to your computer and use it in GitHub Desktop.
A hacky, old, python implementation of leon bottou's lasvm
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# coding: utf-8 | |
"""Online learning.""" | |
import numpy as np | |
from numpy import sign | |
import itertools as it | |
from numpy import array as A, zeros as Z | |
import math | |
import pickle | |
import time | |
import random | |
import collections, os | |
def poly(degree): | |
def kernel(a,b): | |
norm = np.sqrt(np.dot(a,a)*np.dot(b,b)) | |
if norm == 0.: return 0. | |
return ((1+np.dot(a,b)/norm)**degree) | |
return kernel | |
def rbf(var): | |
def kernel(a,b): | |
d = a-b | |
return math.exp(-var*np.dot(d,d)) | |
return kernel | |
class LaSVM(object): | |
def __init__(self, C, kernel, tau, eps=0.001): | |
self.S = [] | |
self.a = [] | |
self.g = [] | |
self.y = [] | |
self.C = C | |
self.k = kernel | |
self.tau = tau | |
self.eps = eps | |
self.b = 0 | |
self.delta = 0 | |
self.i = 0 | |
self.misses = 0 | |
def predict(self, v): | |
return sum(self.a[i]*self.k(self.S[i],v) for i in xrange(len(self.S))) | |
def A(self, i): | |
return min(0, self.C*self.y[i]) | |
def B(self, i): | |
return max(0, self.C*self.y[i]) | |
def tau_violating(self, i, j): | |
return ((self.a[i] < self.B(i)) and | |
(self.a[j] > self.A(j)) and | |
(self.g[i] - self.g[j] > self.tau)) | |
def extreme_ij(self): | |
S = self.S | |
i = np.argmax(list((self.g[i] if self.a[i]<self.B(i) else -np.inf) | |
for i in xrange(len(S)))) | |
j = np.argmin(list((self.g[i] if self.a[i]>self.A(i) else np.inf) | |
for i in xrange(len(S)))) | |
return i,j | |
def lbda(self, i, j): | |
S = self.S | |
l= min((self.g[i]-self.g[j])/(self.k(S[i],S[i])+self.k(S[j],S[j])-self.k(S[i],S[j])), | |
self.B(i)-self.a[i], | |
self.a[j]-self.A(j)) | |
self.a[i] += l | |
self.a[j] -= l | |
for s in xrange(len(S)): | |
self.g[s] -= l*(self.k(S[i],S[s])-self.k(S[j],S[s])) | |
return l | |
def lasvm_process(self, v, cls, w): | |
self.S.append(v) | |
self.a.append(0) | |
self.y.append(cls) | |
self.g.append(cls - self.predict(v)) | |
if cls > 0: | |
i = len(self.S)-1 | |
foo, j = self.extreme_ij() | |
else: | |
j = len(self.S)-1 | |
i, foo = self.extreme_ij() | |
if not self.tau_violating(i, j): return | |
S = self.S | |
lbda = self.lbda(i,j) | |
def lasvm_reprocess(self): | |
S = self.S | |
i,j = self.extreme_ij() | |
if not self.tau_violating(i,j): return | |
lbda = self.lbda(i,j) | |
i,j = self.extreme_ij() | |
to_remove = [] | |
for s in xrange(len(S)): | |
if self.a[s] < self.eps: | |
to_remove.append(s) | |
for s in reversed(to_remove): | |
del S[s] | |
del self.a[s] | |
del self.y[s] | |
del self.g[s] | |
i,j = self.extreme_ij() | |
self.b = (self.g[i]+self.g[j])/2. | |
self.delta = self.g[i]-self.g[j] | |
def update(self, v, c, w): | |
if len(self.S) < 10: | |
self.S.append(v) | |
self.y.append(c) | |
self.a.append(c) | |
self.g.append(0) | |
for i in xrange(len(self.S)) | |
self.g[i] = self.y[i]-self.predict(self.S[i]) | |
else: | |
if c*(self.predict(v) + self.b) < 0: | |
self.misses += 1 | |
self.i += 1 | |
self.lasvm_process(v,c,w) | |
self.lasvm_reprocess() | |
self.lasvm_reprocess() | |
if self.i % 1000 == 0: | |
print "m", self.misses, "s", len(self.S) | |
self.misses = 0 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
What are the inputs to the update function?