Skip to content

Instantly share code, notes, and snippets.

View alexlyzhov's full-sized avatar
🐵

Alexander Lyzhov alexlyzhov

🐵
View GitHub Profile
So i've got this problem: i need to find the number of subsets of the set {1, 2, 3, ..., 163} where the sum of the elements in each subset is divisible by 163. hmm, that sounds a bit tricky, but let's break it down.
first off, the set has 163 elements, and i need to consider all possible subsets of this set. the total number of subsets is 2^163, which is a huge number. obviously, i can't list them all out or check each one individually. there has to be a smarter way to approach this.
i recall that when dealing with subsets and their sums, generating functions can be really useful. maybe i can use generating functions here. let's see.
the generating function for the subsets of {1, 2, 3, ..., 163} would be the product:
(1 + x^1)(1 + x^2)(1 + x^3)...(1 + x^163)
@alexlyzhov
alexlyzhov / whisper_with_vad.py
Created January 24, 2023 04:04
Whisper to json
# based on https://github.com/ANonEntity/WhisperWithVAD
import torch
import whisper
import os
import ffmpeg
import srt
from tqdm import tqdm
import datetime
import urllib.request
@alexlyzhov
alexlyzhov / create_subs.py
Created January 24, 2023 04:00
Whisper json processing
# %%
import os
import sys
import json
import datetime
import numpy as np
from tqdm import tqdm
from glob import glob
import argparse
import shutil
If Biden wins
538 Brier 0.1525, the Econ comment Brier 0.1502, the Econ csv brier 0.1502, (comment Brier - csv Brier) -0.000002 538-comment_Economist 0.0023 538-csv_Economist 0.0023
If Biden wins PA
538 Brier 0.1233, the Econ comment Brier 0.1164, the Econ csv brier 0.1164, (comment Brier - csv Brier) -0.000002 538-comment_Economist 0.0069 538-csv_Economist 0.0069
If Biden wins NV
538 Brier 0.1233, the Econ comment Brier 0.1162, the Econ csv brier 0.1162, (comment Brier - csv Brier) -0.000005 538-comment_Economist 0.0071 538-csv_Economist 0.0071
If Biden wins NV PA
538 Brier 0.0940, the Econ comment Brier 0.0824, the Econ csv brier 0.0824, (comment Brier - csv Brier) -0.000005 538-comment_Economist 0.0117 538-csv_Economist 0.0117
If Biden wins NC
538 Brier 0.1411, the Econ comment Brier 0.1386, the Econ csv brier 0.1386, (comment Brier - csv Brier) 0.000002 538-comment_Economist 0.0025 538-csv_Economist 0.0025
If Biden wins
538 Brier 0.1525, the Econ comment Brier 0.1502, the Econ csv brier 0.1502, (comment-spreadsheet) -0.000002 538-comment_Economist 0.0023 538-csv_Economist 0.0023
If Biden wins PA
538 Brier 0.1233, the Econ comment Brier 0.1164, the Econ csv brier 0.1164, (comment-spreadsheet) -0.000002 538-comment_Economist 0.0069 538-csv_Economist 0.0069
If Biden wins NV
538 Brier 0.1233, the Econ comment Brier 0.1162, the Econ csv brier 0.1162, (comment-spreadsheet) -0.000005 538-comment_Economist 0.0071 538-csv_Economist 0.0071
If Biden wins NV PA
538 Brier 0.0940, the Econ comment Brier 0.0824, the Econ csv brier 0.0824, (comment-spreadsheet) -0.000005 538-comment_Economist 0.0117 538-csv_Economist 0.0117
If Biden wins NC
538 Brier 0.1411, the Econ comment Brier 0.1386, the Econ csv brier 0.1386, (comment-spreadsheet) 0.000002 538-comment_Economist 0.0025 538-csv_Economist 0.0025
If Biden wins
538 Brier 0.1525, the Econ comment Brier 0.1502, the Econ spreadsheet brier 0.1502, (comment-spreadsheet) -0.000002 538-Economist 0.0023
If Biden wins PA
538 Brier 0.1233, the Econ comment Brier 0.1164, the Econ spreadsheet brier 0.1164, (comment-spreadsheet) -0.000002 538-Economist 0.0069
If Biden wins NV
538 Brier 0.1233, the Econ comment Brier 0.1162, the Econ spreadsheet brier 0.1162, (comment-spreadsheet) -0.000005 538-Economist 0.0071
If Biden wins NV PA
538 Brier 0.0940, the Econ comment Brier 0.0824, the Econ spreadsheet brier 0.0824, (comment-spreadsheet) -0.000005 538-Economist 0.0117
If Biden wins NC
538 Brier 0.1411, the Econ comment Brier 0.1386, the Econ spreadsheet brier 0.1386, (comment-spreadsheet) 0.000002 538-Economist 0.0025
If Biden wins no additional states
538 Brier 0.1525, the Economist Brier 0.1502, 538-Economist 0.0023
If Biden wins PA
538 Brier 0.1233, the Economist Brier 0.1164, 538-Economist 0.0069
If Biden wins NV
538 Brier 0.1233, the Economist Brier 0.1162, 538-Economist 0.0071
If Biden wins NV PA
538 Brier 0.0940, the Economist Brier 0.0824, 538-Economist 0.0117
If Biden wins NC
538 Brier 0.1411, the Economist Brier 0.1386, 538-Economist 0.0025
import pandas as pd
import itertools
scores = {'AK': 0, 'AL': 0, 'AR': 0, 'AZ': 0.5, 'CA': 1, 'CO': 1, 'CT': 1, 'DC': 1, 'DE': 1, 'FL': 0, 'GA': 0.5, 'HI': 1, 'IA': 0, 'ID': 0, 'IL': 1, 'IN': 0, 'KS': 0, 'KY': 0, 'LA': 0, 'MA': 1, 'MD': 1, 'ME': 1, 'MI': 1, 'MN': 1, 'MO': 0, 'MS': 0, 'MT': 0, 'NC': 0.5, 'ND': 0, 'NE': 0, 'NH': 1, 'NJ': 1, 'NM': 1, 'NV': 0.5, 'NY': 1, 'OH': 0, 'OK': 0, 'OR': 1, 'PA': 0.5, 'RI': 1, 'SC': 0, 'SD': 0, 'TN': 0, 'TX': 0, 'UT': 0, 'VA': 1, 'VT': 1, 'WA': 1, 'WI': 1, 'WV': 0, 'WY': 0,}
state_list = ['AK', 'AL', 'AR', 'AZ', 'CA', 'CO', 'CT', 'DC', 'DE', 'FL', 'GA', 'HI', 'IA', 'ID', 'IL', 'IN', 'KS', 'KY', 'LA', 'MA', 'MD', 'ME', 'MI', 'MN', 'MO', 'MS', 'MT', 'NC', 'ND', 'NE', 'NH', 'NJ', 'NM', 'NV', 'NY', 'OH', 'OK', 'OR', 'PA', 'RI', 'SC', 'SD', 'TN', 'TX', 'UT', 'VA', 'VT', 'WA', 'WI', 'WV', 'WY',]
five = [0.1514, 0.0164, 0.0095, 0.7112, 0.998, 0.9644, 0.9993, 1.0, 1.0, 0.6817, 0.5744, 0.9933, 0.3753, 0.0058, 0.9985, 0.0451, 0.0291, 0.0153, 0.027, 0.9995, 0.9995, 0.9068, 0.9506, 0
import pandas as pd
import itertools
states = ['AK', 'AL', 'AR', 'AZ', 'CA', 'CO', 'CT', 'DC', 'DE', 'FL', 'GA', 'HI', 'IA', 'ID', 'IL', 'IN', 'KS', 'KY', 'LA', 'MA', 'MD', 'ME', 'MI', 'MN', 'MO', 'MS', 'MT', 'NC', 'ND', 'NE', 'NH', 'NJ', 'NM', 'NV', 'NY', 'OH', 'OK', 'OR', 'PA', 'RI', 'SC', 'SD', 'TN', 'TX', 'UT', 'VA', 'VT', 'WA', 'WI', 'WV', 'WY']
five = [0.1514, 0.0164, 0.0095, 0.7112, 0.998, 0.9644, 0.9993, 1.0, 1.0, 0.6817, 0.5744, 0.9933, 0.3753, 0.0058, 0.9985, 0.0451, 0.0291, 0.0153, 0.027, 0.9995, 0.9995, 0.9068, 0.9506, 0.9585, 0.0711, 0.0858, 0.1565, 0.6461, 0.0226, 0.0058, 0.8886, 0.994, 0.9766, 0.873, 0.9999, 0.4913, 0.0056, 0.9782, 0.8726, 0.9993, 0.0916, 0.0524, 0.0294, 0.3945, 0.0421, 0.9899, 0.9951, 0.9917, 0.939, 0.0086, 0.0016]
econ = [0.0432, 0.0, 0.0, 0.7215, 1.0, 0.9983, 1.0, 1.0, 1.0, 0.7368, 0.534, 1.0, 0.3694, 0.0, 1.0, 0.0002, 0.0015, 0.0, 0.0004, 1.0, 1.0, 0.9984, 0.9759, 0.9824, 0.0155, 0.0034, 0.0094, 0.6486, 0.0, 0.0001, 0.9756, 1.0, 0.9965, 0.934, 1.0, 0.3337, 0.0, 1.0, 0.9309
import pandas as pd
import itertools
five_csv = pd.read_csv('C:\\Users\\Alexander\\Documents\\downloads\\presidential_state_toplines_2020.csv')
states = ['AK', 'AL', 'AR', 'AZ', 'CA', 'CO', 'CT', 'DC', 'DE', 'FL', 'GA', 'HI', 'IA', 'ID', 'IL', 'IN', 'KS', 'KY', 'LA', 'MA', 'MD', 'ME', 'MI', 'MN', 'MO', 'MS', 'MT', 'NC', 'ND', 'NE', 'NH', 'NJ', 'NM', 'NV', 'NY', 'OH', 'OK', 'OR', 'PA', 'RI', 'SC', 'SD', 'TN', 'TX', 'UT', 'VA', 'VT', 'WA', 'WI', 'WV', 'WY']
five = [0.1514, 0.0164, 0.0095, 0.7112, 0.998, 0.9644, 0.9993, 1.0, 1.0, 0.6817, 0.5744, 0.9933, 0.3753, 0.0058, 0.9985, 0.0451, 0.0291, 0.0153, 0.027, 0.9995, 0.9995, 0.9068, 0.9506, 0.9585, 0.0711, 0.0858, 0.1565, 0.6461, 0.0226, 0.0058, 0.8886, 0.994, 0.9766, 0.873, 0.9999, 0.4913, 0.0056, 0.9782, 0.8726, 0.9993, 0.0916, 0.0524, 0.0294, 0.3945, 0.0421, 0.9899, 0.9951, 0.9917, 0.939, 0.0086, 0.0016]
econ = [0.0432, 0.0, 0.0, 0.7215, 1.0, 0.9983, 1.0, 1.0, 1.0, 0.7368, 0.534, 1.0, 0.3694, 0.0, 1.0, 0.0002, 0.0015, 0.0, 0.0004, 1.0, 1.0, 0.9984, 0.9759, 0.9