-
-
Save agramfort/6078557 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from scipy import linalg | |
from sklearn import linear_model | |
def _gcv(X, y, alphas, fit_intercept): | |
"""Local gcv""" | |
# singular values of the design matrix | |
n1, p = X.shape | |
_, s, _ = linalg.svd(X, 0) | |
clf = linear_model.Ridge(fit_intercept=fit_intercept) | |
best_gcv = np.inf | |
for alpha in alphas: | |
dof = np.sum(s ** 2 / (s ** 2 + alpha)) # ridge degrees of freedom | |
clf.alpha = alpha | |
clf.fit(X, y) | |
sse = (1. - clf.score(X, y)) * np.var(y) * n1 | |
gcv_ = sse / n1 / (1. - dof / n1) ** 2 | |
if n1 > p: | |
M = np.dot(np.dot( | |
X, linalg.inv(np.dot(X.T, X) + alpha * np.eye(p))), X.T) | |
else: | |
K = np.dot(X, X.T) | |
M = (K - np.dot(np.dot(K, linalg.inv(K + np.eye(n1) * alpha)), K)) / alpha | |
gcv_ = np.sum(((y - clf.predict(X)) / (1. - np.diag(M))) ** 2) | |
if gcv_ < best_gcv: | |
best_gcv = gcv_ | |
best_alpha = alpha | |
return best_alpha, best_gcv | |
# set the parameters | |
alphas = np.logspace(-2, 6, 9) | |
n1, p = 100, 200 | |
# n1: number of training samples | |
# p: number of features | |
np.random.seed([2]) | |
fit_intercept = False | |
fit_intercept = True | |
# generate the data | |
y, X, beta = (np.random.randn(n1), np.random.randn(n1, p), np.random.randn(p)) | |
beta *= .1 # control the SNR | |
X -= X.mean(0) | |
y += np.dot(X, beta) | |
alpha, _ = _gcv(X, y, alphas, fit_intercept) | |
# try with sklearn's GCV | |
gcv1 = linear_model.RidgeCV(alphas=alphas, fit_intercept=fit_intercept).fit(X, y) | |
print 'sklearns, alpha: ', gcv1.alpha_, 'local implementation: ', alpha | |
gcv2 = linear_model.RidgeCV(alphas=[alpha], fit_intercept=fit_intercept).fit(X, y) | |
gcv3 = linear_model.RidgeCV(alphas=[100], fit_intercept=fit_intercept).fit(X, y) | |
# our estimate is actually much better than scikit learn's one | |
print 'error on beta: %f (skl) %f (local) %f (manual)' % \ | |
(np.sum((gcv1.coef_ - beta) ** 2), | |
np.sum((gcv2.coef_ - beta) ** 2), | |
np.sum((gcv3.coef_ - beta) ** 2)) | |
# this can easily be fixed by not applying the centering of the matrix X | |
# sklearn.linear_model.ridge, line 564 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment