Created
November 24, 2019 06:22
-
-
Save agramfort/4873f16d78fde33f0caa482febf08211 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
from sklearn.preprocessing import OrdinalEncoder | |
class CountOrdinalEncoder(OrdinalEncoder): | |
"""Encode categorical features as an integer array | |
usint count information. | |
""" | |
def __init__(self, categories='auto', dtype=np.float64): | |
self.categories = categories | |
self.dtype = dtype | |
def fit(self, X, y=None): | |
"""Fit the OrdinalEncoder to X. | |
Parameters | |
---------- | |
X : array-like, shape [n_samples, n_features] | |
The data to determine the categories of each feature. | |
Returns | |
------- | |
self | |
""" | |
super().fit(X) | |
X_list, _, _ = self._check_X(X) | |
# now we'll reorder by counts | |
for k, cat in enumerate(self.categories_): | |
counts = [] | |
for c in cat: | |
counts.append(np.sum(X_list[k] == c)) | |
order = np.argsort(counts) | |
self.categories_[k] = cat[order] | |
return self | |
coe = CountOrdinalEncoder() | |
coe.fit_transform(pd.DataFrame(['fr', 'fr', 'fr', 'en', 'en', 'es', 'es'])) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment