|
#!/usr/bin/env python3 |
|
""" |
|
Prime Processor - A Prime Framework Reference Implementation |
|
|
|
This implementation combines all core components of the Prime Framework: |
|
1. Universal Embedding into multi-base, multi-grade representations |
|
2. Spectral Analysis and Intrinsic Factorization |
|
3. Multi-Base Cryptographic Transformation |
|
4. Fiber Algebra Pattern Recognition |
|
5. Coherence-Driven Feedback and State Refinement |
|
6. Universal Integration and Synthesis |
|
|
|
The Prime Processor is the computational engine that applies the Prime Framework's |
|
mathematical structures to reveal the intrinsic properties of numbers and data. |
|
""" |
|
|
|
import numpy as np |
|
import time |
|
import math |
|
import random |
|
from typing import List, Tuple, Dict, Any, Optional, Union |
|
from functools import reduce |
|
from collections import Counter, defaultdict |
|
import matplotlib.pyplot as plt |
|
from mpl_toolkits.mplot3d import Axes3D # Import for 3D plotting |
|
from scipy import sparse |
|
from scipy.sparse import linalg as splinalg |
|
from scipy.spatial.distance import cdist, pdist, squareform |
|
|
|
class PrimeProcessor: |
|
""" |
|
Reference implementation of the Prime Processor, integrating all components |
|
of the Prime Framework to analyze, transform, and synthesize patterns in numbers and data. |
|
|
|
The Prime Processor implements six core processes: |
|
1. Universal Embedding - Multi-base, multi-grade representation |
|
2. Spectral Analysis - Factorization via the Prime Operator's eigenstructure |
|
3. Multi-Base Cryptographic Transformation - Secure, redundant encoding |
|
4. Fiber Algebra Pattern Recognition - Pattern detection across manifold fibers |
|
5. Coherence-Driven Feedback - Self-organizing state refinement |
|
6. Universal Integration - Synthesis of multiple representations |
|
""" |
|
|
|
def __init__(self, dimension: int = 100, num_fibers: int = 7, |
|
num_bases: int = 5, manifold_dim: int = 3, |
|
max_grade: int = 3, use_cuda: bool = False): |
|
""" |
|
Initialize the Prime Processor with the specified configuration. |
|
|
|
Args: |
|
dimension: Maximum dimension for computations |
|
num_fibers: Number of fiber points on the reference manifold |
|
num_bases: Number of numerical bases to use |
|
manifold_dim: Dimension of the reference manifold |
|
max_grade: Maximum grade for Clifford algebra elements |
|
use_cuda: Whether to use GPU acceleration if available |
|
""" |
|
self.dimension = dimension |
|
self.num_fibers = num_fibers |
|
self.num_bases = num_bases |
|
self.manifold_dim = manifold_dim |
|
self.max_grade = max_grade |
|
self.use_cuda = use_cuda |
|
|
|
print(f"Initializing Prime Processor with dimension {dimension}") |
|
print(f"Using {num_fibers} fibers, {num_bases} bases, manifold dimension {manifold_dim}") |
|
|
|
# Initialize the Prime Operator |
|
self.prime_operator = self._construct_prime_operator() |
|
|
|
# Initialize the reference manifold and fiber algebras |
|
self.manifold = self._create_reference_manifold() |
|
self.fibers = self._initialize_fibers() |
|
|
|
# Initialize the Clifford algebra structure |
|
self.clifford_basis = self._initialize_clifford_basis() |
|
|
|
# Initialize numerical bases for multi-base representation |
|
self.bases = self._select_bases() |
|
|
|
# Initialize symmetry transformations from the Lie group |
|
self.symmetry_generators = self._initialize_symmetry_generators() |
|
|
|
# Cache for eigenvalues and eigenvectors |
|
self._eigenvalues = None |
|
self._eigenvectors = None |
|
|
|
# Other caches for computations |
|
self._spectral_cache = {} |
|
self._coherence_cache = {} |
|
self._pattern_cache = {} |
|
self._embeddings_cache = {} |
|
|
|
# Initialize Lie group elements for coherence-driven feedback |
|
# directly here instead of calling a separate method |
|
self.lie_generators = self._initialize_lie_generators_direct() |
|
|
|
print(f"Prime Processor initialized successfully") |
|
|
|
def _initialize_lie_generators_direct(self) -> List[np.ndarray]: |
|
""" |
|
Directly initialize Lie algebra generators for coherence optimization. |
|
This method is called during initialization. |
|
|
|
Returns: |
|
List of Lie generators as matrices |
|
""" |
|
# Number of basis elements in the full Clifford algebra |
|
n_basis = len(self.clifford_basis) |
|
|
|
# Limit the size for computational efficiency |
|
max_basis_size = min(n_basis, 50) |
|
|
|
print(f"Creating Lie generators with {max_basis_size}x{max_basis_size} matrices") |
|
|
|
# Create antisymmetric matrices as Lie algebra generators |
|
generators = [] |
|
|
|
# 1. Create simple rotation generators in each plane (limit the number) |
|
max_planes = min(5, max_basis_size) # Further reduced for efficiency |
|
for i in range(max_planes): |
|
for j in range(i): |
|
# Create a rotation in the i-j plane |
|
generator = np.zeros((max_basis_size, max_basis_size)) |
|
generator[i, j] = 1.0 |
|
generator[j, i] = -1.0 |
|
generators.append(generator) |
|
|
|
# Limit the number of generators for computational efficiency |
|
if len(generators) >= 10: # Further reduced |
|
break |
|
if len(generators) >= 10: |
|
break |
|
|
|
# 2. Create a few structured generators (greatly simplified) |
|
# Just add 2 more simple generators for demonstration |
|
|
|
# 2.1. Connect scalar to first few vector elements |
|
generator = np.zeros((max_basis_size, max_basis_size)) |
|
for j in range(1, min(4, max_basis_size)): |
|
generator[0, j] = 1.0 |
|
generator[j, 0] = -1.0 |
|
generators.append(generator) |
|
|
|
# 2.2. Connect some vector elements to each other |
|
if max_basis_size > 4: |
|
generator = np.zeros((max_basis_size, max_basis_size)) |
|
generator[1, 2] = 1.0 |
|
generator[2, 1] = -1.0 |
|
generator[3, 4] = 0.5 |
|
generator[4, 3] = -0.5 |
|
generators.append(generator) |
|
|
|
print(f"Created {len(generators)} Lie algebra generators") |
|
return generators |
|
|
|
def _construct_prime_operator(self) -> np.ndarray: |
|
""" |
|
Construct the Prime Operator H as defined in the Prime Framework. |
|
For each n, H(e_n) = ∑_{d ∣ (n+1)} e_d |
|
|
|
Returns: |
|
The Prime Operator matrix H |
|
""" |
|
print(f"Constructing Prime Operator of dimension {self.dimension}×{self.dimension}...") |
|
H = np.zeros((self.dimension, self.dimension), dtype=float) |
|
|
|
# For each number from 1 to dimension |
|
for n in range(1, self.dimension + 1): |
|
# Find all divisors of n |
|
divisors = [d for d in range(1, n + 1) if n % d == 0] |
|
|
|
# Set the matrix entries: H[d-1, n-1] = 1 for each divisor d of n |
|
for d in divisors: |
|
H[d-1, n-1] = 1.0 |
|
|
|
return H |
|
|
|
def _create_reference_manifold(self) -> np.ndarray: |
|
""" |
|
Create a reference manifold as a set of points in a space. |
|
This represents the base space of the fiber bundle. |
|
|
|
Returns: |
|
Array of manifold points |
|
""" |
|
# Create manifold points using low-discrepancy sampling for better coverage |
|
points_per_dim = max(2, int(self.num_fibers ** (1/self.manifold_dim))) |
|
|
|
# Create a grid of points |
|
grid_points = [] |
|
|
|
if self.manifold_dim == 1: |
|
# 1D manifold - just evenly spaced points |
|
grid_points = np.linspace(0, 1, self.num_fibers).reshape(-1, 1) |
|
else: |
|
# For higher dimensions, create a grid or use a quasi-random sequence |
|
# We use a simple phi-based sequence for demonstration |
|
grid_points = np.zeros((self.num_fibers, self.manifold_dim)) |
|
|
|
phi = (1 + np.sqrt(5)) / 2 # Golden ratio |
|
for i in range(self.num_fibers): |
|
for j in range(self.manifold_dim): |
|
grid_points[i, j] = ((i+1) * phi**(j+1)) % 1 |
|
|
|
print(f"Created reference manifold with {len(grid_points)} points") |
|
return grid_points |
|
|
|
def _initialize_fibers(self) -> Dict[int, Dict[str, Any]]: |
|
""" |
|
Initialize fiber algebras at each manifold point. |
|
Each fiber is a Clifford algebra that captures a different perspective. |
|
|
|
Returns: |
|
Dictionary mapping fiber indices to fiber data |
|
""" |
|
fibers = {} |
|
|
|
# For each point in the manifold |
|
for i in range(len(self.manifold)): |
|
# Initialize a Clifford algebra fiber |
|
fiber = { |
|
'position': self.manifold[i], |
|
'basis': self._create_fiber_basis(i), |
|
'inner_product': self._create_fiber_metric(self.manifold[i]), |
|
'state': None, |
|
'patterns': [] |
|
} |
|
|
|
fibers[i] = fiber |
|
|
|
print(f"Initialized {len(fibers)} fiber algebras") |
|
return fibers |
|
|
|
def _create_fiber_basis(self, point_idx: int) -> List[str]: |
|
""" |
|
Create basis elements for the Clifford algebra at a given fiber point. |
|
|
|
Args: |
|
point_idx: Index of the manifold point |
|
|
|
Returns: |
|
List of basis element labels |
|
""" |
|
# Create basis element labels: 1, e1, e2, ..., e12, e13, ..., e1..n |
|
# The empty string represents the scalar (1) part |
|
basis = ['1'] # Scalar basis element |
|
|
|
# For computational efficiency, use a reduced dimension for combinations |
|
effective_dim = min(10, self.dimension) # Limit to avoid combinatorial explosion |
|
|
|
# Add basis elements for each grade up to max_grade |
|
for r in range(1, self.max_grade + 1): |
|
# Limit the number of combinations per grade to avoid memory issues |
|
max_combos_per_grade = 30 |
|
combos = list(self._combinations(range(1, effective_dim + 1), r)) |
|
selected_combos = combos[:max_combos_per_grade] |
|
|
|
for combo in selected_combos: |
|
# Create label like "e1", "e13", "e134" |
|
label = 'e' + ''.join(map(str, combo)) |
|
basis.append(label) |
|
|
|
print(f"Created fiber basis with {len(basis)} elements (limited for efficiency)") |
|
return basis |
|
|
|
def _combinations(self, elements: List[int], r: int) -> List[Tuple]: |
|
""" |
|
Generate all r-combinations of elements. |
|
|
|
Args: |
|
elements: List of elements to choose from |
|
r: Number of elements in each combination |
|
|
|
Returns: |
|
List of r-combinations |
|
""" |
|
if r == 0: |
|
return [()] |
|
if not elements: |
|
return [] |
|
|
|
# Take the first element and generate combinations that include it |
|
first, rest = elements[0], elements[1:] |
|
with_first = [(first,) + combo for combo in self._combinations(rest, r - 1)] |
|
|
|
# Generate combinations that don't include the first element |
|
without_first = self._combinations(rest, r) |
|
|
|
return with_first + without_first |
|
|
|
def _create_fiber_metric(self, position: np.ndarray) -> np.ndarray: |
|
""" |
|
Create an inner product metric for the Clifford algebra at a given fiber point. |
|
The metric varies based on position in the manifold. |
|
|
|
Args: |
|
position: Position in the manifold |
|
|
|
Returns: |
|
Inner product matrix |
|
""" |
|
# For computational efficiency, we'll limit the Clifford algebra dimension |
|
# Instead of using the full 2^dimension basis elements, we'll use a smaller subset |
|
max_basis_elements = 100 # Limit to avoid memory explosion |
|
|
|
# Get the actual basis elements that we'll use |
|
basis = self._create_fiber_basis(0) # Just using index 0 to get the structure |
|
n_basis = min(len(basis), max_basis_elements) |
|
|
|
print(f"Creating fiber metric with {n_basis} basis elements (limited for efficiency)") |
|
|
|
# Initialize with identity matrix |
|
metric = np.eye(n_basis) |
|
|
|
# Vary the metric based on position to give each fiber its own perspective |
|
for i in range(1, n_basis): |
|
for j in range(i): |
|
# Position-dependent correlation |
|
correlation = 0.1 * np.cos(np.pi * np.sum(position) * (i + j) / n_basis) |
|
metric[i, j] = correlation |
|
metric[j, i] = correlation |
|
|
|
# Ensure the inner product matrix is positive definite |
|
# Use a more memory-efficient approach for large matrices |
|
if n_basis < 50: |
|
metric = metric.T @ metric |
|
else: |
|
# Just add a small value to the diagonal to ensure positive definiteness |
|
np.fill_diagonal(metric, np.diag(metric) + 0.1) |
|
|
|
# Normalize |
|
max_val = np.max(metric) |
|
if max_val > 0: |
|
metric = metric / max_val |
|
|
|
return metric |
|
|
|
def _binomial(self, n: int, k: int) -> int: |
|
""" |
|
Calculate the binomial coefficient (n choose k). |
|
|
|
Args: |
|
n: Total number of elements |
|
k: Number of elements to choose |
|
|
|
Returns: |
|
Binomial coefficient |
|
""" |
|
return math.factorial(n) // (math.factorial(k) * math.factorial(n - k)) |
|
|
|
def _initialize_clifford_basis(self) -> List[str]: |
|
""" |
|
Initialize the Clifford algebra basis elements. |
|
Limit to lower grades for computational efficiency. |
|
|
|
Returns: |
|
List of basis element labels |
|
""" |
|
# Start with scalar (grade 0) |
|
basis = ['1'] |
|
|
|
# For computational efficiency, use a reduced dimension for combinations |
|
effective_dim = min(10, self.dimension) # Limit to avoid combinatorial explosion |
|
|
|
# Add basis elements up to max_grade |
|
for r in range(1, self.max_grade + 1): |
|
# Limit the number of combinations per grade to avoid memory issues |
|
max_combos_per_grade = 30 |
|
combos = list(self._combinations(range(1, effective_dim + 1), r)) |
|
selected_combos = combos[:max_combos_per_grade] |
|
|
|
for indices in selected_combos: |
|
basis.append('e' + ''.join(map(str, indices))) |
|
|
|
print(f"Initialized Clifford algebra with {len(basis)} basis elements") |
|
return basis |
|
|
|
def _select_bases(self) -> List[int]: |
|
""" |
|
Select a diverse set of numerical bases for multi-base representation. |
|
Prioritizes coprime bases for maximum independence. |
|
|
|
Returns: |
|
List of selected bases |
|
""" |
|
# Always include base 2 (binary) |
|
bases = [2] |
|
|
|
# Add coprime bases when possible |
|
while len(bases) < self.num_bases: |
|
# Prioritize prime bases |
|
candidate = len(bases) + 2 |
|
|
|
# Find next prime or coprime number |
|
while any(self._gcd(candidate, b) > 1 for b in bases): |
|
candidate += 1 |
|
|
|
bases.append(candidate) |
|
|
|
print(f"Selected bases for multi-base representation: {bases}") |
|
return bases |
|
|
|
def _gcd(self, a: int, b: int) -> int: |
|
""" |
|
Calculate the greatest common divisor of two numbers. |
|
|
|
Args: |
|
a, b: Numbers to find GCD for |
|
|
|
Returns: |
|
Greatest common divisor |
|
""" |
|
while b: |
|
a, b = b, a % b |
|
return a |
|
|
|
def _initialize_symmetry_generators(self) -> List[Dict[str, Any]]: |
|
""" |
|
Initialize generators for symmetry transformations. |
|
These transformations preserve the core structure of the embedded data. |
|
|
|
Returns: |
|
List of generator specifications |
|
""" |
|
generators = [] |
|
|
|
# 1. Grade-preserving transformations (limit the count for memory efficiency) |
|
max_grade_transforms = 50 |
|
transform_count = 0 |
|
|
|
for grade in range(1, self.max_grade + 1): |
|
max_dim = min(10, self.dimension) # Limit dimension for efficiency |
|
for i in range(max_dim - 1): |
|
for j in range(i + 1, max_dim): |
|
generators.append({ |
|
'type': 'grade_preserving', |
|
'grade': grade, |
|
'indices': (i, j), |
|
'description': f'Exchange indices {i} and {j} in grade {grade} elements' |
|
}) |
|
|
|
transform_count += 1 |
|
if transform_count >= max_grade_transforms: |
|
break |
|
if transform_count >= max_grade_transforms: |
|
break |
|
if transform_count >= max_grade_transforms: |
|
break |
|
|
|
# 2. Grade-changing transformations (limit the count) |
|
max_grade_change = 20 |
|
for grade1 in range(min(self.max_grade, 2)): # Limit to lower grades for efficiency |
|
grade2 = grade1 + 1 |
|
generators.append({ |
|
'type': 'grade_changing', |
|
'grades': (grade1, grade2), |
|
'description': f'Transfer between grades {grade1} and {grade2}' |
|
}) |
|
|
|
# 3. Base transformations (all bases) |
|
for base in self.bases: |
|
generators.append({ |
|
'type': 'base_transformation', |
|
'base': base, |
|
'description': f'Cyclic permutation in base {base}' |
|
}) |
|
|
|
print(f"Initialized {len(generators)} symmetry generators") |
|
return generators |
|
|
|
#------------------------------------------------------------------------- |
|
# COMPONENT 1: Universal Embedding |
|
#------------------------------------------------------------------------- |
|
|
|
def universal_embedding(self, N: int) -> Dict[str, Any]: |
|
""" |
|
Perform universal embedding of a natural number into multi-base, multi-grade |
|
representations across different fibers of the reference manifold. |
|
|
|
Args: |
|
N: Natural number to embed |
|
|
|
Returns: |
|
Dictionary containing the complete embedding information |
|
""" |
|
if N <= 0 or N > self.dimension: |
|
raise ValueError(f"Number {N} out of range [1, {self.dimension}]") |
|
|
|
# Check cache |
|
cache_key = f"embed_{N}" |
|
if cache_key in self._embeddings_cache: |
|
return self._embeddings_cache[cache_key] |
|
|
|
print(f"Performing universal embedding of {N}") |
|
|
|
embedding = { |
|
'number': N, |
|
'base_representations': {}, |
|
'fiber_embeddings': {}, |
|
'clifford_embedding': None, |
|
'coherence_norm': None, |
|
'metadata': { |
|
'timestamp': time.time(), |
|
'dimension': self.dimension, |
|
'num_fibers': self.num_fibers, |
|
'num_bases': self.num_bases |
|
} |
|
} |
|
|
|
# 1. Multi-base representation |
|
for base in self.bases: |
|
digits = self._convert_to_base(N, base) |
|
embedding['base_representations'][base] = digits |
|
|
|
# 2. Clifford algebra embedding (grade structure) |
|
# Create a superposition state in the Clifford algebra |
|
n_basis = len(self.clifford_basis) |
|
clifford_state = np.zeros(n_basis) |
|
|
|
# Set scalar part |
|
clifford_state[0] = 1.0 |
|
|
|
# Encode number in grade-1 components (vectors) |
|
for i in range(1, min(self.dimension + 1, n_basis)): |
|
# Only access basis elements that actually exist in our limited basis set |
|
basis_label = f'e{i}' |
|
if basis_label in self.clifford_basis: |
|
basis_idx = self.clifford_basis.index(basis_label) |
|
if basis_idx < len(clifford_state): |
|
# Use a trigonometric encoding for grade-1 elements |
|
clifford_state[basis_idx] = np.sin(np.pi * N / (i + 1)) / (i + 1) |
|
|
|
# Encode base digits in grade-2 components (bivectors) |
|
for base, digits in embedding['base_representations'].items(): |
|
for i, digit in enumerate(digits): |
|
if i < self.dimension - 1: |
|
# Encode each digit in bivector components |
|
basis_label = f'e{i+1}{i+2}' |
|
if basis_label in self.clifford_basis: |
|
basis_idx = self.clifford_basis.index(basis_label) |
|
if basis_idx < len(clifford_state): |
|
clifford_state[basis_idx] = digit / base |
|
|
|
# Normalize |
|
norm = np.linalg.norm(clifford_state) |
|
if norm > 0: |
|
clifford_state = clifford_state / norm |
|
|
|
embedding['clifford_embedding'] = clifford_state |
|
|
|
# 3. Fiber-specific embeddings |
|
for fiber_idx, fiber in self.fibers.items(): |
|
# Create a fiber-specific encoding using the fiber's inner product |
|
fiber_embedding = self._embed_in_fiber(N, fiber, clifford_state) |
|
embedding['fiber_embeddings'][fiber_idx] = fiber_embedding |
|
|
|
# 4. Compute initial coherence norm |
|
embedding['coherence_norm'] = self._compute_coherence_norm(embedding) |
|
|
|
# Cache the embedding |
|
self._embeddings_cache[cache_key] = embedding |
|
|
|
return embedding |
|
|
|
def _convert_to_base(self, N: int, base: int) -> List[int]: |
|
""" |
|
Convert a number to a specific base representation. |
|
|
|
Args: |
|
N: Number to convert |
|
base: Base to convert to |
|
|
|
Returns: |
|
List of digits in the specified base (most significant digit first) |
|
""" |
|
if N == 0: |
|
return [0] |
|
|
|
digits = [] |
|
n = N |
|
|
|
while n > 0: |
|
digits.append(n % base) |
|
n //= base |
|
|
|
return list(reversed(digits)) |
|
|
|
def _embed_in_fiber(self, N: int, fiber: Dict[str, Any], |
|
clifford_state: np.ndarray) -> Dict[str, Any]: |
|
""" |
|
Create a fiber-specific embedding of a number. |
|
|
|
Args: |
|
N: Number to embed |
|
fiber: Fiber data |
|
clifford_state: Clifford algebra state |
|
|
|
Returns: |
|
Fiber-specific embedding |
|
""" |
|
# Get fiber position |
|
position = fiber['position'] |
|
|
|
# Get the inner product metric for this fiber |
|
metric = fiber['inner_product'] |
|
|
|
# Transform the clifford state based on the fiber position |
|
fiber_state = clifford_state.copy() |
|
|
|
# Apply a position-dependent transformation |
|
for i in range(len(fiber_state)): |
|
phase = np.sum(position) * i / len(fiber_state) |
|
fiber_state[i] *= np.cos(np.pi * phase) |
|
|
|
# Compute coherence within this fiber |
|
# This is the squared norm in the fiber's inner product metric |
|
coherence = fiber_state @ metric @ fiber_state |
|
|
|
return { |
|
'position': position, |
|
'state': fiber_state, |
|
'coherence': coherence, |
|
'metadata': { |
|
'number': N |
|
} |
|
} |
|
|
|
def _compute_coherence_norm(self, embedding: Dict[str, Any]) -> float: |
|
""" |
|
Compute the coherence norm of an embedding. |
|
Lower values indicate better internal consistency across representations. |
|
|
|
Args: |
|
embedding: Complete embedding data |
|
|
|
Returns: |
|
Coherence norm value |
|
""" |
|
coherence_components = [] |
|
|
|
# 1. Base representation coherence |
|
# Check if all base representations correctly encode the same number |
|
N = embedding['number'] |
|
base_coherence = 0.0 |
|
|
|
for base, digits in embedding['base_representations'].items(): |
|
value = 0 |
|
for digit in digits: |
|
value = value * base + digit |
|
|
|
# Add penalty for discrepancy |
|
base_coherence += abs(value - N) / N |
|
|
|
coherence_components.append(base_coherence / len(embedding['base_representations'])) |
|
|
|
# 2. Fiber coherence |
|
# Compute variability across fibers |
|
fiber_coherences = [fiber_data['coherence'] |
|
for fiber_data in embedding['fiber_embeddings'].values()] |
|
|
|
if fiber_coherences: |
|
# Use coefficient of variation as a coherence measure |
|
mean_coherence = np.mean(fiber_coherences) |
|
std_coherence = np.std(fiber_coherences) |
|
|
|
if mean_coherence > 0: |
|
variation = std_coherence / mean_coherence |
|
coherence_components.append(variation) |
|
else: |
|
coherence_components.append(0.0) |
|
|
|
# 3. Clifford algebra coherence |
|
# Check how well the clifford embedding preserves number properties |
|
clifford_state = embedding['clifford_embedding'] |
|
grade1_sum = 0.0 |
|
|
|
for i in range(1, min(self.dimension + 1, len(self.clifford_basis))): |
|
basis_label = f'e{i}' |
|
if basis_label in self.clifford_basis: |
|
idx = self.clifford_basis.index(basis_label) |
|
if idx < len(clifford_state): |
|
grade1_sum += i * abs(clifford_state[idx]) |
|
|
|
# Normalize and compute disparity from actual value |
|
if grade1_sum > 0: |
|
grade1_coherence = abs(grade1_sum - N) / N |
|
coherence_components.append(grade1_coherence) |
|
|
|
# Combine coherence components |
|
if coherence_components: |
|
return np.mean(coherence_components) |
|
else: |
|
return 1.0 # Maximum incoherence if no components |
|
|
|
#------------------------------------------------------------------------- |
|
# COMPONENT 2: Spectral Analysis and Intrinsic Factorization |
|
#------------------------------------------------------------------------- |
|
|
|
def spectral_analysis(self, N: int) -> Dict[str, Any]: |
|
""" |
|
Perform spectral analysis of a number using the Prime Operator. |
|
This reveals the intrinsic prime structure through eigenvalues and eigenvectors. |
|
|
|
Args: |
|
N: Number to analyze |
|
|
|
Returns: |
|
Dictionary containing spectral analysis results |
|
""" |
|
if N <= 0 or N > self.dimension: |
|
raise ValueError(f"Number {N} out of range [1, {self.dimension}]") |
|
|
|
# Check cache |
|
cache_key = f"spectral_{N}" |
|
if cache_key in self._spectral_cache: |
|
return self._spectral_cache[cache_key] |
|
|
|
print(f"Performing spectral analysis of {N}") |
|
|
|
# Get the embedded representation |
|
embedding = self.universal_embedding(N) |
|
|
|
# Create analysis result structure |
|
analysis = { |
|
'number': N, |
|
'eigenvalues': None, |
|
'eigenvectors': None, |
|
'spectral_signature': None, |
|
'intrinsic_factors': None, |
|
'projections': None, |
|
'metadata': { |
|
'timestamp': time.time(), |
|
} |
|
} |
|
|
|
# Compute eigenvalues and eigenvectors of the Prime Operator (if not cached) |
|
if self._eigenvalues is None or self._eigenvectors is None: |
|
eigenvalues, eigenvectors = self._compute_eigenstructure() |
|
self._eigenvalues = eigenvalues |
|
self._eigenvectors = eigenvectors |
|
else: |
|
eigenvalues = self._eigenvalues |
|
eigenvectors = self._eigenvectors |
|
|
|
analysis['eigenvalues'] = eigenvalues |
|
analysis['eigenvectors'] = eigenvectors |
|
|
|
# Create the embedded representation of N |
|
v_N = self._create_basis_vector(N) |
|
|
|
# Project v_N onto the eigenvectors to get the spectral signature |
|
projections = eigenvectors.T @ v_N |
|
analysis['projections'] = projections |
|
|
|
# Create spectral signature from the projections |
|
signature = [] |
|
for i, (eigenvalue, projection) in enumerate(zip(eigenvalues, projections)): |
|
if abs(projection) > 1e-10: # Only include significant projections |
|
signature.append((eigenvalue, projection)) |
|
|
|
# Sort by magnitude of projection |
|
signature.sort(key=lambda x: abs(x[1]), reverse=True) |
|
analysis['spectral_signature'] = signature |
|
|
|
# Apply the Prime Operator to v_N |
|
Hv_N = self.prime_operator @ v_N |
|
|
|
# The divisors of N appear as non-zero entries in Hv_N |
|
divisors = [i+1 for i in range(self.dimension) if Hv_N[i] > 0.5] |
|
|
|
# Find proper divisors (excluding 1 and N) |
|
proper_divisors = [d for d in divisors if d != 1 and d != N] |
|
|
|
# Determine if N is prime |
|
is_prime = len(proper_divisors) == 0 |
|
|
|
# Find prime factorization |
|
if is_prime: |
|
prime_factors = [N] |
|
else: |
|
prime_factors = self._factorize_number(N) |
|
|
|
analysis['intrinsic_factors'] = prime_factors |
|
analysis['is_prime'] = is_prime |
|
analysis['divisors'] = divisors |
|
|
|
# Cache the result |
|
self._spectral_cache[cache_key] = analysis |
|
|
|
return analysis |
|
|
|
def _compute_eigenstructure(self) -> Tuple[np.ndarray, np.ndarray]: |
|
""" |
|
Compute the eigenvalues and eigenvectors of the Prime Operator. |
|
|
|
Returns: |
|
Tuple of (eigenvalues, eigenvectors) |
|
""" |
|
print("Computing eigenvalues and eigenvectors of the Prime Operator...") |
|
start = time.time() |
|
|
|
# Compute eigenvalues and eigenvectors |
|
eigenvalues, eigenvectors = np.linalg.eig(self.prime_operator) |
|
|
|
# Sort by eigenvalue magnitude (descending) |
|
idx = np.argsort(-np.abs(eigenvalues)) |
|
eigenvalues = eigenvalues[idx] |
|
eigenvectors = eigenvectors[:, idx] |
|
|
|
end = time.time() |
|
print(f"Spectral analysis completed in {end - start:.2f} seconds") |
|
|
|
return eigenvalues, eigenvectors |
|
|
|
def _create_basis_vector(self, N: int) -> np.ndarray: |
|
""" |
|
Create a basis vector representing a number. |
|
|
|
Args: |
|
N: Number to represent |
|
|
|
Returns: |
|
Basis vector |
|
""" |
|
v = np.zeros(self.dimension) |
|
if 1 <= N <= self.dimension: |
|
v[N-1] = 1.0 # Adjust for 0-based indexing |
|
return v |
|
|
|
def _factorize_number(self, N: int) -> List[int]: |
|
""" |
|
Factorize a number into its prime components using spectral properties. |
|
|
|
Args: |
|
N: Number to factorize |
|
|
|
Returns: |
|
List of prime factors |
|
""" |
|
if N <= 1: |
|
return [] |
|
|
|
# Check if N is prime |
|
if self._is_prime(N): |
|
return [N] |
|
|
|
# Apply the Prime Operator to get divisors |
|
v_N = self._create_basis_vector(N) |
|
Hv_N = self.prime_operator @ v_N |
|
|
|
# Find proper divisors |
|
divisors = [i+1 for i in range(self.dimension) if Hv_N[i] > 0.5] |
|
proper_divisors = [d for d in divisors if d != 1 and d != N] |
|
|
|
if not proper_divisors: |
|
return [N] # Should not happen if we already checked for primality |
|
|
|
# Choose the smallest proper divisor |
|
d = min(proper_divisors) |
|
|
|
# Recursively factorize |
|
return self._factorize_number(d) + self._factorize_number(N // d) |
|
|
|
def _is_prime(self, N: int) -> bool: |
|
""" |
|
Check if a number is prime. |
|
|
|
Args: |
|
N: Number to check |
|
|
|
Returns: |
|
True if N is prime, False otherwise |
|
""" |
|
if N <= 1: |
|
return False |
|
if N <= 3: |
|
return True |
|
if N % 2 == 0 or N % 3 == 0: |
|
return False |
|
|
|
# Check divisibility by numbers of form 6k±1 |
|
i = 5 |
|
while i * i <= N: |
|
if N % i == 0 or N % (i + 2) == 0: |
|
return False |
|
i += 6 |
|
|
|
return True |
|
|
|
#------------------------------------------------------------------------- |
|
# COMPONENT 3: Multi-Base Cryptographic Transformation |
|
#------------------------------------------------------------------------- |
|
|
|
def cryptographic_transform(self, N: int) -> Dict[str, Any]: |
|
""" |
|
Apply cryptographic transformations to the multi-base representations. |
|
This creates a secure, redundant encoding of the number. |
|
|
|
Args: |
|
N: Number to transform |
|
|
|
Returns: |
|
Cryptographically transformed representation |
|
""" |
|
# Get the universal embedding |
|
embedding = self.universal_embedding(N) |
|
|
|
print(f"Applying cryptographic transformation to {N}") |
|
|
|
# Create transformation result |
|
transform = { |
|
'number': N, |
|
'secure_encodings': {}, |
|
'verification_data': {}, |
|
'metadata': { |
|
'timestamp': time.time(), |
|
'bases': self.bases, |
|
} |
|
} |
|
|
|
# Apply transformations to each base representation |
|
for base, digits in embedding['base_representations'].items(): |
|
# 1. Create secure encoding for this base |
|
secure_digits = self._secure_transform_digits(digits, base, N) |
|
transform['secure_encodings'][base] = secure_digits |
|
|
|
# 2. Create verification data |
|
verification = self._create_verification_data(digits, secure_digits, base) |
|
transform['verification_data'][base] = verification |
|
|
|
# Create cross-base verification |
|
cross_verification = {} |
|
for base1 in self.bases: |
|
for base2 in self.bases: |
|
if base1 < base2: |
|
# Create redundant check between bases |
|
secure1 = transform['secure_encodings'][base1] |
|
secure2 = transform['secure_encodings'][base2] |
|
|
|
# Simple XOR-based verification |
|
check_value = sum(d for d in secure1) ^ sum(d for d in secure2) |
|
cross_verification[f"{base1}_{base2}"] = check_value |
|
|
|
transform['cross_verification'] = cross_verification |
|
|
|
# Create holistic verification code |
|
checksum = self._compute_checksum(transform) |
|
transform['checksum'] = checksum |
|
|
|
return transform |
|
|
|
def _secure_transform_digits(self, digits: List[int], base: int, N: int) -> List[int]: |
|
""" |
|
Transform digits using a secure, invertible transformation. |
|
|
|
Args: |
|
digits: Original digit sequence |
|
base: Numerical base |
|
N: Original number |
|
|
|
Returns: |
|
Secured digit sequence |
|
""" |
|
# Start with a copy of the digits |
|
secure = digits.copy() |
|
|
|
# Apply a position-dependent transformation |
|
for i in range(len(secure)): |
|
# Position-specific key derived from N |
|
key = (N + i) % base |
|
|
|
# Apply a simple invertible operation (this is a simplified example) |
|
# In a real implementation, use proper cryptographic primitives |
|
secure[i] = (secure[i] + key) % base |
|
|
|
# Apply diffusion (mix information between digits) |
|
if len(secure) > 1: |
|
for _ in range(3): # Multiple rounds for better diffusion |
|
new_secure = secure.copy() |
|
for i in range(len(secure)): |
|
next_i = (i + 1) % len(secure) |
|
new_secure[i] = (secure[i] + secure[next_i]) % base |
|
secure = new_secure |
|
|
|
return secure |
|
|
|
def _create_verification_data(self, original: List[int], secured: List[int], |
|
base: int) -> Dict[str, Any]: |
|
""" |
|
Create verification data for the transformation. |
|
|
|
Args: |
|
original: Original digit sequence |
|
secured: Secured digit sequence |
|
base: Numerical base |
|
|
|
Returns: |
|
Verification data |
|
""" |
|
# Compute simple checksum of original digits |
|
orig_sum = sum(original) % base |
|
|
|
# Compute simple checksum of secured digits |
|
secure_sum = sum(secured) % base |
|
|
|
# Compute a verification code that relates the two |
|
verification_code = (orig_sum * secure_sum) % base |
|
|
|
return { |
|
'original_checksum': orig_sum, |
|
'secure_checksum': secure_sum, |
|
'verification_code': verification_code |
|
} |
|
|
|
def _compute_checksum(self, transform: Dict[str, Any]) -> int: |
|
""" |
|
Compute a holistic checksum for the entire transformation. |
|
|
|
Args: |
|
transform: Complete transformation data |
|
|
|
Returns: |
|
Checksum value |
|
""" |
|
# Start with the original number |
|
N = transform['number'] |
|
checksum = N |
|
|
|
# Incorporate data from all bases |
|
for base, secure_digits in transform['secure_encodings'].items(): |
|
# Simple scheme for demonstration |
|
base_checksum = sum(d * (i+1) for i, d in enumerate(secure_digits)) % 1000 |
|
checksum = (checksum * 13 + base_checksum) % 10000 |
|
|
|
# Incorporate cross-verification data |
|
for key, value in transform['cross_verification'].items(): |
|
checksum = (checksum * 17 + value) % 10000 |
|
|
|
return checksum |
|
|
|
#------------------------------------------------------------------------- |
|
# COMPONENT 4: Fiber Algebra Pattern Recognition |
|
#------------------------------------------------------------------------- |
|
|
|
def pattern_recognition(self, N: int) -> Dict[str, Any]: |
|
""" |
|
Identify patterns in the number using fiber algebra techniques. |
|
|
|
Args: |
|
N: Number to analyze |
|
|
|
Returns: |
|
Dictionary of recognized patterns |
|
""" |
|
# Get the universal embedding and spectral analysis |
|
embedding = self.universal_embedding(N) |
|
spectral = self.spectral_analysis(N) |
|
|
|
print(f"Performing pattern recognition for {N}") |
|
|
|
# Create pattern recognition result |
|
patterns = { |
|
'number': N, |
|
'identified_patterns': [], |
|
'pattern_strengths': {}, |
|
'global_patterns': {}, |
|
'metadata': { |
|
'timestamp': time.time(), |
|
} |
|
} |
|
|
|
# 1. Analyze digit patterns in multiple bases |
|
for base, digits in embedding['base_representations'].items(): |
|
base_patterns = self._analyze_digit_patterns(digits, base) |
|
|
|
for pattern in base_patterns: |
|
pattern['base'] = base |
|
patterns['identified_patterns'].append(pattern) |
|
|
|
# 2. Analyze spectral patterns |
|
spectral_patterns = self._analyze_spectral_patterns(N, spectral) |
|
patterns['identified_patterns'].extend(spectral_patterns) |
|
|
|
# 3. Analyze patterns across fibers |
|
fiber_patterns = self._analyze_fiber_patterns(embedding) |
|
patterns['identified_patterns'].extend(fiber_patterns) |
|
|
|
# 4. Calculate pattern strengths |
|
for pattern in patterns['identified_patterns']: |
|
pattern_id = pattern['pattern_id'] |
|
patterns['pattern_strengths'][pattern_id] = pattern['strength'] |
|
|
|
# 5. Identify global patterns |
|
# Check for special number types |
|
if self._is_perfect_number(N): |
|
patterns['global_patterns']['perfect_number'] = True |
|
|
|
if self._is_fibonacci_number(N): |
|
patterns['global_patterns']['fibonacci_number'] = True |
|
|
|
# Check for proximity to special constants |
|
for constant, name in [ |
|
(np.pi, 'pi'), |
|
(np.e, 'e'), |
|
(np.sqrt(2), 'sqrt2'), |
|
((1 + np.sqrt(5))/2, 'golden_ratio') |
|
]: |
|
# Check if N is close to k * constant for small k |
|
for k in range(1, 10): |
|
proximity = abs(N - k * constant) / (k * constant) |
|
if proximity < 0.01: # Within 1% |
|
patterns['global_patterns'][f'close_to_{k}_{name}'] = proximity |
|
|
|
# Sort patterns by strength |
|
patterns['identified_patterns'].sort(key=lambda p: p['strength'], reverse=True) |
|
|
|
return patterns |
|
|
|
def _analyze_digit_patterns(self, digits: List[int], base: int) -> List[Dict[str, Any]]: |
|
""" |
|
Analyze patterns in the digits of a specific base representation. |
|
|
|
Args: |
|
digits: Sequence of digits |
|
base: Numerical base |
|
|
|
Returns: |
|
List of identified patterns |
|
""" |
|
patterns = [] |
|
|
|
# Skip if too few digits |
|
if len(digits) < 2: |
|
return patterns |
|
|
|
# 1. Check for repeating digit patterns |
|
for length in range(1, min(5, len(digits))): |
|
for start in range(len(digits) - 2*length + 1): |
|
segment = digits[start:start+length] |
|
|
|
# Look for the same segment later in the sequence |
|
for pos in range(start + length, len(digits) - length + 1): |
|
if digits[pos:pos+length] == segment: |
|
# Found repeating pattern |
|
pattern = { |
|
'pattern_id': f"repeat_b{base}_{start}_{length}", |
|
'type': 'repeating_digits', |
|
'segment': segment, |
|
'positions': [start, pos], |
|
'length': length, |
|
'strength': length / len(digits) |
|
} |
|
patterns.append(pattern) |
|
|
|
# 2. Check for arithmetic sequences |
|
for start in range(len(digits) - 2): |
|
for length in range(3, min(len(digits) - start + 1, 8)): |
|
subsequence = digits[start:start+length] |
|
|
|
# Check if it's an arithmetic sequence |
|
diffs = [subsequence[i+1] - subsequence[i] for i in range(length-1)] |
|
|
|
if all(d == diffs[0] for d in diffs): |
|
pattern = { |
|
'pattern_id': f"arithmetic_b{base}_{start}_{length}_{diffs[0]}", |
|
'type': 'arithmetic_sequence', |
|
'start': start, |
|
'length': length, |
|
'difference': diffs[0], |
|
'strength': length / len(digits) |
|
} |
|
patterns.append(pattern) |
|
|
|
# 3. Check for palindromic patterns |
|
for length in range(2, min(len(digits) + 1, 10)): |
|
for start in range(len(digits) - length + 1): |
|
segment = digits[start:start+length] |
|
|
|
if segment == segment[::-1]: # Check if palindrome |
|
pattern = { |
|
'pattern_id': f"palindrome_b{base}_{start}_{length}", |
|
'type': 'palindrome', |
|
'start': start, |
|
'length': length, |
|
'strength': length / len(digits) |
|
} |
|
patterns.append(pattern) |
|
|
|
return patterns |
|
|
|
def _analyze_spectral_patterns(self, N: int, spectral: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
Analyze patterns in the spectral signature. |
|
|
|
Args: |
|
N: Number being analyzed |
|
spectral: Spectral analysis data |
|
|
|
Returns: |
|
List of identified patterns |
|
""" |
|
patterns = [] |
|
|
|
# Extract the spectral signature |
|
signature = spectral['spectral_signature'] |
|
|
|
# Skip if no signature |
|
if not signature: |
|
return patterns |
|
|
|
# 1. Check for dominant eigenvalues |
|
eigenvalues = [ev for ev, _ in signature] |
|
projections = [abs(proj) for _, proj in signature] |
|
|
|
# Find eigenvalues with large projections |
|
threshold = max(projections) * 0.5 |
|
dominant = [(ev, proj) for (ev, proj) in zip(eigenvalues, projections) if proj >= threshold] |
|
|
|
if dominant: |
|
pattern = { |
|
'pattern_id': f"dominant_eigenvalues_{len(dominant)}", |
|
'type': 'dominant_eigenvalues', |
|
'eigenvalues': [float(ev) for ev, _ in dominant], |
|
'projections': [float(proj) for _, proj in dominant], |
|
'strength': sum(proj for _, proj in dominant) / sum(projections) |
|
} |
|
patterns.append(pattern) |
|
|
|
# 2. Check for eigenvalue relationships |
|
if len(eigenvalues) >= 2: |
|
for i in range(len(eigenvalues) - 1): |
|
for j in range(i + 1, min(i + 5, len(eigenvalues))): |
|
ratio = abs(eigenvalues[i] / eigenvalues[j]) |
|
|
|
# Check if close to a simple rational |
|
for d in range(1, 10): |
|
for n in range(1, 10): |
|
rational = n / d |
|
if abs(ratio - rational) < 0.05: # Within 5% |
|
pattern = { |
|
'pattern_id': f"eigenvalue_ratio_{i}_{j}_{n}_{d}", |
|
'type': 'eigenvalue_ratio', |
|
'eigenvalues': [float(eigenvalues[i]), float(eigenvalues[j])], |
|
'ratio': float(ratio), |
|
'approximation': f"{n}/{d}", |
|
'strength': 1.0 - abs(ratio - rational) |
|
} |
|
patterns.append(pattern) |
|
|
|
# 3. Check for connections to prime factorization |
|
intrinsic_factors = spectral['intrinsic_factors'] |
|
|
|
if len(intrinsic_factors) > 1: |
|
# Compare eigenvalue distribution to prime factorization |
|
factor_pattern = { |
|
'pattern_id': f"prime_factorization_{len(intrinsic_factors)}", |
|
'type': 'prime_factorization', |
|
'factors': intrinsic_factors, |
|
'eigenvalues': [float(eigenvalues[i]) for i in range(min(len(eigenvalues), len(intrinsic_factors)))], |
|
'strength': min(1.0, len(intrinsic_factors) / 5) # More factors = stronger pattern |
|
} |
|
patterns.append(factor_pattern) |
|
|
|
return patterns |
|
|
|
def _analyze_fiber_patterns(self, embedding: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
Analyze patterns across different fiber algebras. |
|
|
|
Args: |
|
embedding: Universal embedding data |
|
|
|
Returns: |
|
List of identified patterns |
|
""" |
|
patterns = [] |
|
|
|
# Get fiber embeddings |
|
fiber_embeddings = embedding['fiber_embeddings'] |
|
|
|
# Skip if no fiber embeddings |
|
if not fiber_embeddings: |
|
return patterns |
|
|
|
# 1. Check for coherence patterns across fibers |
|
coherences = [fiber_data['coherence'] for fiber_data in fiber_embeddings.values()] |
|
|
|
if coherences: |
|
mean_coherence = np.mean(coherences) |
|
std_coherence = np.std(coherences) |
|
|
|
# Check if coherences are unusually consistent or variable |
|
if std_coherence < 0.05 * mean_coherence: # Very consistent |
|
pattern = { |
|
'pattern_id': 'consistent_fiber_coherence', |
|
'type': 'fiber_coherence', |
|
'mean_coherence': float(mean_coherence), |
|
'std_coherence': float(std_coherence), |
|
'strength': 1.0 - std_coherence / mean_coherence |
|
} |
|
patterns.append(pattern) |
|
elif std_coherence > 0.3 * mean_coherence: # Very variable |
|
pattern = { |
|
'pattern_id': 'variable_fiber_coherence', |
|
'type': 'fiber_coherence', |
|
'mean_coherence': float(mean_coherence), |
|
'std_coherence': float(std_coherence), |
|
'strength': std_coherence / mean_coherence |
|
} |
|
patterns.append(pattern) |
|
|
|
# 2. Look for correlations between fiber position and state |
|
correlations = [] |
|
|
|
for fiber_idx, fiber_data in fiber_embeddings.items(): |
|
position = fiber_data['position'] |
|
state = fiber_data['state'] |
|
|
|
# Skip if state is missing |
|
if state is None or len(state) == 0: |
|
continue |
|
|
|
# Compute correlation between position components and dominant state components |
|
for pos_dim in range(min(len(position), 3)): |
|
pos_value = position[pos_dim] |
|
|
|
for state_dim in range(min(len(state), 10)): |
|
state_value = state[state_dim] |
|
|
|
# Simple correlation heuristic |
|
correlation = np.cos(np.pi * pos_value * state_value) |
|
correlations.append((fiber_idx, pos_dim, state_dim, correlation)) |
|
|
|
# Find strong correlations |
|
strong_correlations = [(f, p, s, c) for f, p, s, c in correlations if abs(c) > 0.8] |
|
|
|
if strong_correlations: |
|
pattern = { |
|
'pattern_id': f"fiber_position_correlation_{len(strong_correlations)}", |
|
'type': 'fiber_position_correlation', |
|
'correlations': [(int(f), int(p), int(s), float(c)) for f, p, s, c in strong_correlations], |
|
'strength': np.mean([abs(c) for _, _, _, c in strong_correlations]) |
|
} |
|
patterns.append(pattern) |
|
|
|
return patterns |
|
|
|
def _is_perfect_number(self, N: int) -> bool: |
|
""" |
|
Check if a number is a perfect number (sum of proper divisors equals the number). |
|
|
|
Args: |
|
N: Number to check |
|
|
|
Returns: |
|
True if N is a perfect number, False otherwise |
|
""" |
|
if N <= 1: |
|
return False |
|
|
|
# Find proper divisors |
|
divisors = [] |
|
for i in range(1, int(np.sqrt(N)) + 1): |
|
if N % i == 0: |
|
divisors.append(i) |
|
if i != N // i and i != 1: |
|
divisors.append(N // i) |
|
|
|
return sum(divisors) == N |
|
|
|
def _is_fibonacci_number(self, N: int) -> bool: |
|
""" |
|
Check if a number is a Fibonacci number. |
|
|
|
Args: |
|
N: Number to check |
|
|
|
Returns: |
|
True if N is a Fibonacci number, False otherwise |
|
""" |
|
if N < 0: |
|
return False |
|
|
|
# Use the fact that a number is Fibonacci if and only if |
|
# 5*n^2 + 4 or 5*n^2 - 4 is a perfect square |
|
check1 = 5 * N * N + 4 |
|
check2 = 5 * N * N - 4 |
|
|
|
sqrt1 = int(np.sqrt(check1)) |
|
sqrt2 = int(np.sqrt(check2)) |
|
|
|
return sqrt1 * sqrt1 == check1 or sqrt2 * sqrt2 == check2 |
|
|
|
#------------------------------------------------------------------------- |
|
# COMPONENT 5: Coherence-Driven Feedback and State Refinement |
|
#------------------------------------------------------------------------- |
|
|
|
def coherence_optimization(self, N: int, iterations: int = 100) -> Dict[str, Any]: |
|
""" |
|
Perform coherence-driven feedback to refine the embedded state. |
|
This iteratively applies transformations to reduce the coherence norm. |
|
|
|
Args: |
|
N: Number to optimize |
|
iterations: Maximum number of iterations |
|
|
|
Returns: |
|
Optimized embedding with minimal coherence norm |
|
""" |
|
# Get the initial embedding |
|
embedding = self.universal_embedding(N) |
|
initial_coherence = embedding['coherence_norm'] |
|
|
|
print(f"Performing coherence optimization for {N}") |
|
print(f"Initial coherence norm: {initial_coherence:.6f}") |
|
|
|
# Create optimization result |
|
optimization = { |
|
'number': N, |
|
'initial_coherence': initial_coherence, |
|
'final_coherence': None, |
|
'optimized_embedding': None, |
|
'iterations': 0, |
|
'trajectory': [], |
|
'transformations': [], |
|
'metadata': { |
|
'timestamp': time.time(), |
|
} |
|
} |
|
|
|
# Track the best state |
|
best_embedding = embedding |
|
best_coherence = initial_coherence |
|
|
|
# Keep track of the trajectory |
|
optimization['trajectory'].append(best_coherence) |
|
|
|
# Iterative optimization |
|
for iter_idx in range(iterations): |
|
# Find the best transformation to apply |
|
candidate_embeddings = [] |
|
|
|
# Try different Lie algebra generators |
|
for gen_idx, generator in enumerate(self.lie_generators): |
|
# Apply the transformation |
|
transformed_embedding = self._apply_lie_transformation(best_embedding, generator) |
|
coherence = transformed_embedding['coherence_norm'] |
|
candidate_embeddings.append((transformed_embedding, coherence, gen_idx)) |
|
|
|
# Sort by coherence (lowest first) |
|
candidate_embeddings.sort(key=lambda x: x[1]) |
|
|
|
# Check if we improved |
|
if candidate_embeddings and candidate_embeddings[0][1] < best_coherence: |
|
# Found a better state |
|
best_embedding = candidate_embeddings[0][0] |
|
best_coherence = candidate_embeddings[0][1] |
|
gen_idx = candidate_embeddings[0][2] |
|
|
|
# Record the transformation |
|
optimization['transformations'].append({ |
|
'iteration': iter_idx, |
|
'generator_index': gen_idx, |
|
'coherence_before': optimization['trajectory'][-1], |
|
'coherence_after': best_coherence |
|
}) |
|
|
|
# Update trajectory |
|
optimization['trajectory'].append(best_coherence) |
|
else: |
|
# No improvement, try random perturbation with 10% probability |
|
if random.random() < 0.1: |
|
perturbed_embedding = self._random_perturbation(best_embedding) |
|
perturbed_coherence = perturbed_embedding['coherence_norm'] |
|
|
|
# Accept with a small probability even if worse |
|
if perturbed_coherence < best_coherence or random.random() < 0.01: |
|
best_embedding = perturbed_embedding |
|
best_coherence = perturbed_coherence |
|
|
|
# Record the transformation |
|
optimization['transformations'].append({ |
|
'iteration': iter_idx, |
|
'generator_index': -1, # -1 indicates random perturbation |
|
'coherence_before': optimization['trajectory'][-1], |
|
'coherence_after': best_coherence |
|
}) |
|
|
|
# Update trajectory |
|
optimization['trajectory'].append(best_coherence) |
|
else: |
|
# No improvement and no perturbation, terminate early |
|
if iter_idx > 10: |
|
break |
|
|
|
# Check termination condition |
|
if best_coherence < 1e-6: # Very close to perfect coherence |
|
break |
|
|
|
# Set final results |
|
optimization['iterations'] = iter_idx + 1 |
|
optimization['final_coherence'] = best_coherence |
|
optimization['optimized_embedding'] = best_embedding |
|
optimization['improvement'] = initial_coherence - best_coherence |
|
|
|
print(f"Optimization completed in {iter_idx + 1} iterations") |
|
print(f"Final coherence norm: {best_coherence:.6f}") |
|
print(f"Improvement: {optimization['improvement']:.6f}") |
|
|
|
return optimization |
|
|
|
def _apply_lie_transformation(self, embedding: Dict[str, Any], |
|
generator: np.ndarray) -> Dict[str, Any]: |
|
""" |
|
Apply a Lie group transformation to an embedding. |
|
|
|
Args: |
|
embedding: Current embedding |
|
generator: Lie algebra generator |
|
|
|
Returns: |
|
Transformed embedding |
|
""" |
|
# Create a copy of the embedding |
|
transformed = embedding.copy() |
|
|
|
# Apply transformation to Clifford embedding |
|
clifford_state = embedding['clifford_embedding'] |
|
|
|
if clifford_state is not None and len(clifford_state) > 0: |
|
# Ensure dimensions are compatible |
|
state_dim = len(clifford_state) |
|
gen_dim = generator.shape[0] |
|
|
|
# Use the smaller dimension |
|
use_dim = min(state_dim, gen_dim) |
|
|
|
# Get compatible sub-arrays |
|
sub_state = clifford_state[:use_dim] |
|
sub_generator = generator[:use_dim, :use_dim] |
|
|
|
# Apply the transformation exp(0.1 * generator) to the state |
|
# For small values, we can approximate exp(tG) ≈ I + tG |
|
transformation = np.eye(use_dim) + 0.1 * sub_generator |
|
sub_transformed = transformation @ sub_state |
|
|
|
# Normalize |
|
norm = np.linalg.norm(sub_transformed) |
|
if norm > 0: |
|
sub_transformed = sub_transformed / norm |
|
|
|
# Create full transformed state (keeping additional components unchanged) |
|
transformed_state = clifford_state.copy() |
|
transformed_state[:use_dim] = sub_transformed |
|
|
|
transformed['clifford_embedding'] = transformed_state |
|
|
|
# Apply transformation to fiber embeddings |
|
transformed_fibers = {} |
|
|
|
for fiber_idx, fiber_data in embedding['fiber_embeddings'].items(): |
|
# Make a copy |
|
new_fiber_data = fiber_data.copy() |
|
|
|
# Transform the state if available |
|
state = fiber_data.get('state') |
|
if state is not None and len(state) > 0: |
|
# Ensure dimensions are compatible |
|
state_dim = len(state) |
|
gen_dim = generator.shape[0] |
|
|
|
# Use the smaller dimension |
|
use_dim = min(state_dim, gen_dim) |
|
|
|
if use_dim > 0: |
|
# Get compatible sub-arrays |
|
sub_state = state[:use_dim] |
|
sub_generator = generator[:use_dim, :use_dim] |
|
|
|
# Apply transformation |
|
transformation = np.eye(use_dim) + 0.1 * sub_generator |
|
sub_transformed = transformation @ sub_state |
|
|
|
# Normalize |
|
norm = np.linalg.norm(sub_transformed) |
|
if norm > 0: |
|
sub_transformed = sub_transformed / norm |
|
|
|
# Create full transformed state (keeping additional components unchanged) |
|
new_state = state.copy() |
|
new_state[:use_dim] = sub_transformed |
|
|
|
# Update state |
|
new_fiber_data['state'] = new_state |
|
|
|
# Get the fiber's inner product metric |
|
metric = self.fibers[fiber_idx]['inner_product'] |
|
|
|
# Compute coherence (limited to the smaller dimension) |
|
if len(metric) >= use_dim: |
|
sub_metric = metric[:use_dim, :use_dim] |
|
sub_state = new_state[:use_dim] |
|
new_fiber_data['coherence'] = sub_state @ sub_metric @ sub_state |
|
|
|
transformed_fibers[fiber_idx] = new_fiber_data |
|
|
|
transformed['fiber_embeddings'] = transformed_fibers |
|
|
|
# Recompute coherence norm |
|
transformed['coherence_norm'] = self._compute_coherence_norm(transformed) |
|
|
|
return transformed |
|
|
|
def _random_perturbation(self, embedding: Dict[str, Any]) -> Dict[str, Any]: |
|
""" |
|
Apply a random perturbation to an embedding. |
|
|
|
Args: |
|
embedding: Current embedding |
|
|
|
Returns: |
|
Perturbed embedding |
|
""" |
|
# Create a copy of the embedding |
|
perturbed = embedding.copy() |
|
|
|
# Perturb Clifford embedding |
|
clifford_state = embedding['clifford_embedding'] |
|
|
|
if clifford_state is not None and len(clifford_state) > 0: |
|
# Add small random noise |
|
noise = np.random.normal(0, 0.05, size=len(clifford_state)) |
|
perturbed_state = clifford_state + noise |
|
|
|
# Normalize |
|
norm = np.linalg.norm(perturbed_state) |
|
if norm > 0: |
|
perturbed_state = perturbed_state / norm |
|
|
|
perturbed['clifford_embedding'] = perturbed_state |
|
|
|
# Perturb fiber embeddings |
|
perturbed_fibers = {} |
|
|
|
for fiber_idx, fiber_data in embedding['fiber_embeddings'].items(): |
|
# Make a copy |
|
new_fiber_data = fiber_data.copy() |
|
|
|
# Perturb the state if available |
|
state = fiber_data.get('state') |
|
if state is not None and len(state) > 0: |
|
# Add small random noise |
|
noise = np.random.normal(0, 0.05, size=len(state)) |
|
new_state = state + noise |
|
|
|
# Normalize |
|
norm = np.linalg.norm(new_state) |
|
if norm > 0: |
|
new_state = new_state / norm |
|
|
|
# Update state and recompute coherence |
|
new_fiber_data['state'] = new_state |
|
|
|
# Get the fiber's inner product metric |
|
if fiber_idx in self.fibers: |
|
metric = self.fibers[fiber_idx]['inner_product'] |
|
|
|
# Compute coherence for the compatible dimensions |
|
use_dim = min(len(metric), len(new_state)) |
|
if use_dim > 0: |
|
sub_metric = metric[:use_dim, :use_dim] |
|
sub_state = new_state[:use_dim] |
|
new_fiber_data['coherence'] = sub_state @ sub_metric @ sub_state |
|
|
|
perturbed_fibers[fiber_idx] = new_fiber_data |
|
|
|
perturbed['fiber_embeddings'] = perturbed_fibers |
|
|
|
# Recompute coherence norm |
|
perturbed['coherence_norm'] = self._compute_coherence_norm(perturbed) |
|
|
|
return perturbed |
|
|
|
#------------------------------------------------------------------------- |
|
# COMPONENT 6: Universal Integration and Synthesis |
|
#------------------------------------------------------------------------- |
|
|
|
def universal_integration(self, N: int) -> Dict[str, Any]: |
|
""" |
|
Perform universal integration and synthesis of all processing components. |
|
This combines spectral, cryptographic, pattern, and coherence analyses |
|
into a unified, holistic representation. |
|
|
|
Args: |
|
N: Number to integrate |
|
|
|
Returns: |
|
Integrated synthesis of all processing components |
|
""" |
|
print(f"Performing universal integration for {N}") |
|
|
|
# Start with basic embedding |
|
embedding = self.universal_embedding(N) |
|
|
|
# Perform spectral analysis |
|
spectral = self.spectral_analysis(N) |
|
|
|
# Apply cryptographic transformation |
|
crypto = self.cryptographic_transform(N) |
|
|
|
# Recognize patterns |
|
patterns = self.pattern_recognition(N) |
|
|
|
# Optimize coherence |
|
optimization = self.coherence_optimization(N, iterations=50) |
|
|
|
# Create integration result |
|
integration = { |
|
'number': N, |
|
'unified_representation': {}, |
|
'interpretations': {}, |
|
'synthesis': {}, |
|
'metadata': { |
|
'timestamp': time.time(), |
|
'dimension': self.dimension, |
|
'num_fibers': self.num_fibers, |
|
'num_bases': self.num_bases |
|
} |
|
} |
|
|
|
# 1. Create unified representation |
|
unified = {} |
|
|
|
# 1.1. Core representation |
|
unified['core'] = { |
|
'value': N, |
|
'intrinsic_factors': spectral['intrinsic_factors'], |
|
'is_prime': spectral['is_prime'], |
|
'optimal_coherence': optimization['final_coherence'] |
|
} |
|
|
|
# 1.2. Multi-modal representation |
|
unified['multimodal'] = { |
|
'spectral_signature': [(float(ev), float(proj)) for ev, proj in spectral['spectral_signature'][:5]], |
|
'multibase_encoding': {base: digits for base, digits in embedding['base_representations'].items()}, |
|
'top_patterns': patterns['identified_patterns'][:3], |
|
'cryptographic_checksum': crypto['checksum'] |
|
} |
|
|
|
integration['unified_representation'] = unified |
|
|
|
# 2. Generate interpretations |
|
interpretations = {} |
|
|
|
# 2.1. Mathematical properties |
|
math_properties = [] |
|
|
|
# Add basic properties |
|
if spectral['is_prime']: |
|
math_properties.append({ |
|
'property': 'prime_number', |
|
'explanation': f"{N} is a prime number, indivisible by any number except 1 and itself." |
|
}) |
|
else: |
|
math_properties.append({ |
|
'property': 'composite_number', |
|
'explanation': f"{N} is a composite number with factors: {spectral['intrinsic_factors']}" |
|
}) |
|
|
|
# Add special properties from patterns |
|
for property_name, value in patterns['global_patterns'].items(): |
|
if property_name == 'perfect_number' and value: |
|
math_properties.append({ |
|
'property': 'perfect_number', |
|
'explanation': f"{N} is a perfect number, equal to the sum of its proper divisors." |
|
}) |
|
elif property_name == 'fibonacci_number' and value: |
|
math_properties.append({ |
|
'property': 'fibonacci_number', |
|
'explanation': f"{N} is a Fibonacci number, part of the sequence where each number is the sum of the two preceding ones." |
|
}) |
|
elif property_name.startswith('close_to_'): |
|
parts = property_name.split('_') |
|
if len(parts) >= 3: |
|
k = parts[2] |
|
constant = parts[3] |
|
math_properties.append({ |
|
'property': f'approximates_{k}_{constant}', |
|
'explanation': f"{N} closely approximates {k} × {constant} with error {value:.6f}" |
|
}) |
|
|
|
interpretations['mathematical_properties'] = math_properties |
|
|
|
# 2.2. Pattern interpretations |
|
pattern_interpretations = [] |
|
|
|
for pattern in patterns['identified_patterns'][:5]: # Top 5 patterns |
|
pattern_type = pattern['type'] |
|
|
|
if pattern_type == 'repeating_digits': |
|
base = pattern['base'] |
|
segment = pattern['segment'] |
|
pattern_interpretations.append({ |
|
'pattern_type': 'repeating_digits', |
|
'description': f"Repeating digit sequence {segment} in base {base}", |
|
'significance': f"Indicates potential cyclic structure in base {base}" |
|
}) |
|
elif pattern_type == 'arithmetic_sequence': |
|
base = pattern['base'] |
|
difference = pattern['difference'] |
|
pattern_interpretations.append({ |
|
'pattern_type': 'arithmetic_sequence', |
|
'description': f"Arithmetic sequence with difference {difference} in base {base}", |
|
'significance': "Indicates linear structure or regular progression" |
|
}) |
|
elif pattern_type == 'palindrome': |
|
base = pattern['base'] |
|
pattern_interpretations.append({ |
|
'pattern_type': 'palindrome', |
|
'description': f"Palindromic digit sequence in base {base}", |
|
'significance': "Indicates reflective symmetry in the number's structure" |
|
}) |
|
elif pattern_type == 'dominant_eigenvalues': |
|
eigenvalues = pattern['eigenvalues'] |
|
pattern_interpretations.append({ |
|
'pattern_type': 'dominant_eigenvalues', |
|
'description': f"Strong projection onto eigenvalues {eigenvalues}", |
|
'significance': "Indicates core structural components in the number's spectral signature" |
|
}) |
|
|
|
interpretations['pattern_interpretations'] = pattern_interpretations |
|
|
|
# 2.3. Coherence interpretation |
|
coherence_interpretation = { |
|
'initial_coherence': embedding['coherence_norm'], |
|
'optimized_coherence': optimization['final_coherence'], |
|
'improvement': embedding['coherence_norm'] - optimization['final_coherence'], |
|
'interpretation': "Lower coherence indicates greater internal consistency and harmony in the number's structure." |
|
} |
|
|
|
if coherence_interpretation['improvement'] > 0.1: |
|
coherence_interpretation['significance'] = "Significant optimization achieved, revealing a more harmonious underlying structure." |
|
else: |
|
coherence_interpretation['significance'] = "The number already had good internal coherence, indicating natural harmony in its structure." |
|
|
|
interpretations['coherence_interpretation'] = coherence_interpretation |
|
|
|
integration['interpretations'] = interpretations |
|
|
|
# 3. Universal synthesis |
|
synthesis = {} |
|
|
|
# 3.1. Holistic signature |
|
# Combine all aspects into a compact signature |
|
|
|
# Start with spectral components |
|
signature_components = [] |
|
if spectral['spectral_signature']: |
|
for i, (ev, proj) in enumerate(spectral['spectral_signature'][:3]): |
|
if abs(proj) > 0.1: # Only include significant projections |
|
signature_components.append(float(ev) * float(proj)) |
|
|
|
# Add pattern strengths |
|
for pattern_id, strength in patterns['pattern_strengths'].items(): |
|
if strength > 0.5: # Only include strong patterns |
|
# Hash the pattern_id to a number and scale by strength |
|
hash_value = sum(ord(c) for c in pattern_id) / 1000.0 |
|
signature_components.append(hash_value * strength) |
|
|
|
# Add optimized coherence |
|
signature_components.append(1.0 - optimization['final_coherence']) |
|
|
|
# Combine into a compact signature |
|
holistic_signature = { |
|
'components': signature_components, |
|
'compact_signature': [round(component, 6) for component in signature_components] |
|
} |
|
|
|
synthesis['holistic_signature'] = holistic_signature |
|
|
|
# 3.2. Essential character |
|
# Determine the essential mathematical "character" or "personality" of the number |
|
|
|
# Categorize the number based on all analyses |
|
number_types = [] |
|
|
|
if spectral['is_prime']: |
|
number_types.append('prime') |
|
|
|
# Check if dominated by specific pattern types |
|
pattern_type_counts = Counter([p['type'] for p in patterns['identified_patterns']]) |
|
dominant_pattern = pattern_type_counts.most_common(1)[0] if pattern_type_counts else None |
|
|
|
if dominant_pattern and dominant_pattern[1] >= 3: |
|
number_types.append(f"{dominant_pattern[0]}_rich") |
|
|
|
# Check coherence properties |
|
if optimization['final_coherence'] < 0.01: |
|
number_types.append('highly_coherent') |
|
elif optimization['final_coherence'] > 0.5: |
|
number_types.append('chaotic') |
|
|
|
# Check spectral distribution |
|
if spectral['spectral_signature'] and len(spectral['spectral_signature']) >= 3: |
|
# If first eigenvalue has more than 50% of the projection weight |
|
total_proj = sum(abs(proj) for _, proj in spectral['spectral_signature']) |
|
top_proj = abs(spectral['spectral_signature'][0][1]) |
|
|
|
if top_proj > 0.5 * total_proj: |
|
number_types.append('spectrally_focused') |
|
else: |
|
number_types.append('spectrally_distributed') |
|
|
|
# Special properties |
|
for property_name in patterns['global_patterns']: |
|
if property_name == 'perfect_number': |
|
number_types.append('perfect') |
|
elif property_name == 'fibonacci_number': |
|
number_types.append('fibonacci') |
|
elif property_name.startswith('close_to_'): |
|
parts = property_name.split('_') |
|
if len(parts) >= 3: |
|
constant = parts[3] |
|
number_types.append(f"{constant}_related") |
|
|
|
synthesis['essential_character'] = { |
|
'types': number_types, |
|
'primary_type': number_types[0] if number_types else 'regular', |
|
'description': self._generate_character_description(N, number_types) |
|
} |
|
|
|
# 3.3. Relational positioning |
|
# Position the number in relation to various mathematical structures |
|
relational_positioning = { |
|
'prime_factors': spectral['intrinsic_factors'], |
|
'divisors': spectral['divisors'], |
|
'spectral_relations': {}, |
|
'notable_proximities': {} |
|
} |
|
|
|
# Add spectral relations |
|
if spectral['spectral_signature']: |
|
top_eigenvalues = [ev for ev, _ in spectral['spectral_signature'][:3]] |
|
|
|
# Find numbers with similar eigenvalue structure |
|
related_numbers = [] |
|
for other_N in range(2, min(self.dimension + 1, 101)): |
|
if other_N != N: |
|
# Check cache for other number's spectral analysis |
|
other_key = f"spectral_{other_N}" |
|
if other_key in self._spectral_cache: |
|
other_spectral = self._spectral_cache[other_key] |
|
if 'spectral_signature' in other_spectral and other_spectral['spectral_signature']: |
|
other_top_evs = [ev for ev, _ in other_spectral['spectral_signature'][:3]] |
|
|
|
# Compute similarity |
|
if len(other_top_evs) == len(top_eigenvalues): |
|
similarity = sum(abs(a - b) for a, b in zip(top_eigenvalues, other_top_evs)) |
|
if similarity < 0.5: # Threshold for similarity |
|
related_numbers.append((other_N, similarity)) |
|
|
|
# Sort by similarity (most similar first) |
|
related_numbers.sort(key=lambda x: x[1]) |
|
relational_positioning['spectral_relations']['similar_numbers'] = [n for n, _ in related_numbers[:5]] |
|
|
|
# Add notable proximities |
|
for special_value, name in [(n**2, f"square_of_{n}") for n in range(2, 20)] + \ |
|
[(n**3, f"cube_of_{n}") for n in range(2, 10)] + \ |
|
[(2**n, f"power_of_2_{n}") for n in range(2, 10)]: |
|
if abs(N - special_value) <= 2: |
|
relational_positioning['notable_proximities'][name] = special_value |
|
|
|
synthesis['relational_positioning'] = relational_positioning |
|
|
|
integration['synthesis'] = synthesis |
|
|
|
return integration |
|
|
|
def _generate_character_description(self, N: int, number_types: List[str]) -> str: |
|
""" |
|
Generate a character description for a number based on its types. |
|
|
|
Args: |
|
N: Number to describe |
|
number_types: List of type classifications |
|
|
|
Returns: |
|
Character description |
|
""" |
|
if not number_types: |
|
return f"{N} is a regular number with no particularly distinctive properties." |
|
|
|
descriptions = { |
|
'prime': f"{N} is a prime number, indivisible and elemental in its nature.", |
|
'composite': f"{N} is a composite number, formed through the multiplication of smaller primes.", |
|
'perfect': f"{N} is a perfect number, elegantly balanced as it equals the sum of its proper divisors.", |
|
'fibonacci': f"{N} is a Fibonacci number, part of nature's fundamental growth sequence.", |
|
'highly_coherent': f"{N} possesses remarkable internal harmony and structural consistency.", |
|
'chaotic': f"{N} exhibits complex, less predictable structure with high entropy.", |
|
'spectrally_focused': f"{N} has a concentrated spectral signature, indicating a strong central structure.", |
|
'spectrally_distributed': f"{N} has a distributed spectral signature, showing diverse mathematical components.", |
|
'repeating_digits_rich': f"{N} features prominent repeating digit patterns in various bases.", |
|
'palindrome_rich': f"{N} shows reflective symmetry in its digit representations.", |
|
'arithmetic_sequence_rich': f"{N} contains linear progressions in its digit patterns.", |
|
'eigenvalue_ratio_rich': f"{N} exhibits harmonic proportions in its spectral structure." |
|
} |
|
|
|
# Start with primary type |
|
primary_type = number_types[0] |
|
if primary_type in descriptions: |
|
description = descriptions[primary_type] |
|
else: |
|
description = f"{N} is a number with {primary_type} characteristics." |
|
|
|
# Add secondary types (up to 2 more) |
|
secondary_types = [t for t in number_types[1:3] if t in descriptions] |
|
|
|
if secondary_types: |
|
secondary_descriptions = [] |
|
for t in secondary_types: |
|
# Safely extract the description after "is " |
|
full_desc = descriptions[t] |
|
if " is " in full_desc: |
|
# Extract part after "is " |
|
parts = full_desc.split(" is ") |
|
if len(parts) > 1: |
|
secondary_descriptions.append(parts[1]) |
|
else: |
|
# Alternative approach if pattern not found |
|
words = full_desc.split() |
|
if len(words) > 2: # Skip the "{N} is" part |
|
secondary_descriptions.append(" ".join(words[2:])) |
|
|
|
if secondary_descriptions: |
|
description += " It also " + " and ".join(secondary_descriptions) |
|
|
|
return description |
|
|
|
#------------------------------------------------------------------------- |
|
# Utility and Visualization Methods |
|
#------------------------------------------------------------------------- |
|
|
|
def visualize_embedding(self, N: int) -> None: |
|
""" |
|
Visualize the universal embedding of a number. |
|
|
|
Args: |
|
N: Number to visualize |
|
""" |
|
# Get the embedding |
|
embedding = self.universal_embedding(N) |
|
|
|
# Create figure |
|
plt.figure(figsize=(15, 10)) |
|
|
|
# Plot 1: Multi-base representation |
|
plt.subplot(2, 2, 1) |
|
|
|
# Prepare data for visualization |
|
bases = sorted(embedding['base_representations'].keys()) |
|
max_digits = max(len(digits) for digits in embedding['base_representations'].values()) |
|
|
|
# Create a matrix for the heatmap |
|
base_matrix = np.zeros((len(bases), max_digits)) |
|
|
|
for i, base in enumerate(bases): |
|
digits = embedding['base_representations'][base] |
|
for j, digit in enumerate(digits): |
|
base_matrix[i, j] = digit / base # Normalize by base |
|
|
|
# Create heatmap |
|
plt.imshow(base_matrix, aspect='auto', cmap='viridis') |
|
plt.colorbar(label='Normalized Digit Value') |
|
plt.xlabel('Digit Position') |
|
plt.ylabel('Base') |
|
plt.yticks(range(len(bases)), bases) |
|
plt.title(f'Multi-Base Representation of {N}') |
|
|
|
# Plot 2: Coherence across fibers |
|
plt.subplot(2, 2, 2) |
|
|
|
# Extract coherence values |
|
fiber_indices = sorted(embedding['fiber_embeddings'].keys()) |
|
coherence_values = [embedding['fiber_embeddings'][idx]['coherence'] |
|
for idx in fiber_indices] |
|
|
|
plt.bar(range(len(fiber_indices)), coherence_values) |
|
plt.xlabel('Fiber Index') |
|
plt.ylabel('Coherence') |
|
plt.title('Coherence Across Manifold Fibers') |
|
plt.xticks(range(len(fiber_indices)), fiber_indices) |
|
|
|
# Plot 3: Clifford algebra embedding |
|
plt.subplot(2, 2, 3) |
|
|
|
# Show the clifford state as a bar chart of coefficients |
|
clifford_state = embedding['clifford_embedding'] |
|
|
|
if clifford_state is not None and len(clifford_state) > 0: |
|
# Limit to first 20 components for clarity |
|
n_components = min(20, len(clifford_state)) |
|
plt.bar(range(n_components), np.abs(clifford_state[:n_components])) |
|
plt.xlabel('Basis Element Index') |
|
plt.ylabel('Coefficient Magnitude') |
|
plt.title('Clifford Algebra Embedding (first 20 components)') |
|
else: |
|
plt.text(0.5, 0.5, 'No Clifford embedding available', |
|
horizontalalignment='center', verticalalignment='center') |
|
|
|
# Plot 4: Embedding in manifold space (first 3 fibers) |
|
plt.subplot(2, 2, 4) |
|
|
|
if len(embedding['fiber_embeddings']) >= 3: |
|
# Extract the first component of the state in each fiber |
|
fiber_indices = sorted(embedding['fiber_embeddings'].keys())[:3] |
|
|
|
# Get positions of first 3 fibers |
|
positions = np.array([embedding['fiber_embeddings'][idx]['position'] |
|
for idx in fiber_indices]) |
|
|
|
# Get first component of state in each fiber |
|
states = [] |
|
for idx in fiber_indices: |
|
state = embedding['fiber_embeddings'][idx]['state'] |
|
if state is not None and len(state) > 0: |
|
states.append(state[0]) |
|
else: |
|
states.append(0) |
|
|
|
# Create 3D plot if we have 3D manifold and 3D toolkit is available |
|
try: |
|
if positions.shape[1] >= 3: |
|
# Create 3D subplot |
|
ax = plt.subplot(2, 2, 4, projection='3d') |
|
scatter = ax.scatter(positions[:, 0], positions[:, 1], positions[:, 2], |
|
c=states, cmap='viridis', s=100) |
|
plt.colorbar(scatter, label='First State Component') |
|
ax.set_xlabel('X') |
|
ax.set_ylabel('Y') |
|
ax.set_zlabel('Z') |
|
ax.set_title('Embedding in 3D Manifold') |
|
else: |
|
# Create 2D plot for lower dimensions |
|
scatter = plt.scatter(positions[:, 0], positions[:, 1], |
|
c=states, cmap='viridis', s=100) |
|
plt.colorbar(scatter, label='First State Component') |
|
plt.xlabel('X') |
|
plt.ylabel('Y') |
|
plt.title('Embedding in 2D Manifold') |
|
except Exception as e: |
|
# Fallback to 2D plot if 3D plotting fails |
|
print(f"3D plotting not available, using 2D plot instead: {e}") |
|
scatter = plt.scatter(positions[:, 0], positions[:, 1], |
|
c=states, cmap='viridis', s=100) |
|
plt.colorbar(scatter, label='First State Component') |
|
plt.xlabel('X') |
|
plt.ylabel('Y') |
|
plt.title('Embedding in 2D Manifold') |
|
else: |
|
plt.text(0.5, 0.5, 'Insufficient fiber data for visualization', |
|
horizontalalignment='center', verticalalignment='center') |
|
|
|
plt.tight_layout() |
|
plt.show() |
|
|
|
def visualize_spectral_analysis(self, N: int) -> None: |
|
""" |
|
Visualize the spectral analysis of a number. |
|
|
|
Args: |
|
N: Number to visualize |
|
""" |
|
# Get the spectral analysis |
|
spectral = self.spectral_analysis(N) |
|
|
|
# Create figure |
|
plt.figure(figsize=(15, 10)) |
|
|
|
# Plot 1: Eigenvalue spectrum |
|
plt.subplot(2, 2, 1) |
|
|
|
# Extract eigenvalues |
|
eigenvalues = spectral['eigenvalues'] |
|
|
|
if eigenvalues is not None and len(eigenvalues) > 0: |
|
# Plot first 20 eigenvalues |
|
n_eigenvalues = min(20, len(eigenvalues)) |
|
plt.bar(range(n_eigenvalues), np.abs(eigenvalues[:n_eigenvalues])) |
|
plt.xlabel('Index') |
|
plt.ylabel('Eigenvalue Magnitude') |
|
plt.title('Prime Operator Eigenvalue Spectrum') |
|
else: |
|
plt.text(0.5, 0.5, 'No eigenvalue data available', |
|
horizontalalignment='center', verticalalignment='center') |
|
|
|
# Plot 2: Spectral signature |
|
plt.subplot(2, 2, 2) |
|
|
|
# Extract spectral signature |
|
signature = spectral['spectral_signature'] |
|
|
|
if signature and len(signature) > 0: |
|
# Extract eigenvalues and projections |
|
sig_eigenvalues = [float(ev) for ev, _ in signature[:10]] |
|
sig_projections = [float(abs(proj)) for _, proj in signature[:10]] |
|
|
|
# Plot as scatter plot |
|
plt.scatter(sig_eigenvalues, sig_projections, s=100, c=sig_projections, cmap='viridis') |
|
plt.colorbar(label='Projection Magnitude') |
|
plt.xlabel('Eigenvalue') |
|
plt.ylabel('Projection Magnitude') |
|
plt.title(f'Spectral Signature of {N}') |
|
else: |
|
plt.text(0.5, 0.5, 'No spectral signature available', |
|
horizontalalignment='center', verticalalignment='center') |
|
|
|
# Plot 3: Divisors |
|
plt.subplot(2, 2, 3) |
|
|
|
# Extract divisors |
|
divisors = spectral['divisors'] |
|
|
|
if divisors and len(divisors) > 0: |
|
# Plot divisors |
|
plt.stem(divisors, np.ones(len(divisors)), linefmt='C0-', markerfmt='C0o') |
|
plt.xlabel('Divisor') |
|
plt.ylabel('Count') |
|
plt.title(f'Divisors of {N}') |
|
|
|
# Add vertical lines for intrinsic prime factors |
|
for factor in spectral['intrinsic_factors']: |
|
plt.axvline(x=factor, color='r', linestyle='--', alpha=0.7) |
|
else: |
|
plt.text(0.5, 0.5, 'No divisor data available', |
|
horizontalalignment='center', verticalalignment='center') |
|
|
|
# Plot 4: Prime factorization |
|
plt.subplot(2, 2, 4) |
|
|
|
# Extract intrinsic factors |
|
factors = spectral['intrinsic_factors'] |
|
|
|
if factors and len(factors) > 0: |
|
# Count occurrences of each factor |
|
factor_counts = Counter(factors) |
|
unique_factors = sorted(factor_counts.keys()) |
|
counts = [factor_counts[f] for f in unique_factors] |
|
|
|
# Plot as bar chart |
|
bars = plt.bar(unique_factors, counts) |
|
|
|
# Add count labels |
|
for bar, count in zip(bars, counts): |
|
height = bar.get_height() |
|
plt.text(bar.get_x() + bar.get_width()/2., height + 0.1, |
|
str(count), ha='center', va='bottom') |
|
|
|
plt.xlabel('Prime Factor') |
|
plt.ylabel('Exponent') |
|
plt.title(f'Prime Factorization of {N}') |
|
plt.xticks(unique_factors) |
|
else: |
|
plt.text(0.5, 0.5, 'No factorization data available', |
|
horizontalalignment='center', verticalalignment='center') |
|
|
|
plt.tight_layout() |
|
plt.show() |
|
|
|
def visualize_patterns(self, N: int) -> None: |
|
""" |
|
Visualize patterns found in a number. |
|
|
|
Args: |
|
N: Number to visualize |
|
""" |
|
# Get the pattern recognition results |
|
patterns = self.pattern_recognition(N) |
|
|
|
# Create figure |
|
plt.figure(figsize=(15, 10)) |
|
|
|
# Plot 1: Pattern strengths |
|
plt.subplot(2, 2, 1) |
|
|
|
# Extract pattern strengths |
|
strengths = patterns['pattern_strengths'] |
|
|
|
if strengths and len(strengths) > 0: |
|
# Sort by strength |
|
sorted_patterns = sorted(strengths.items(), key=lambda x: x[1], reverse=True) |
|
|
|
# Limit to top 10 |
|
top_patterns = sorted_patterns[:10] |
|
pattern_ids = [p[0].split('_')[0] for p in top_patterns] # Shorten IDs |
|
pattern_strengths = [p[1] for p in top_patterns] |
|
|
|
# Plot as bar chart |
|
plt.barh(range(len(pattern_ids)), pattern_strengths) |
|
plt.yticks(range(len(pattern_ids)), pattern_ids) |
|
plt.xlabel('Pattern Strength') |
|
plt.ylabel('Pattern Type') |
|
plt.title('Top Pattern Strengths') |
|
else: |
|
plt.text(0.5, 0.5, 'No pattern strength data available', |
|
horizontalalignment='center', verticalalignment='center') |
|
|
|
# Plot 2: Pattern type distribution |
|
plt.subplot(2, 2, 2) |
|
|
|
# Count pattern types |
|
pattern_types = [p['type'] for p in patterns['identified_patterns']] |
|
type_counts = Counter(pattern_types) |
|
|
|
if type_counts: |
|
# Sort by count |
|
sorted_types = sorted(type_counts.items(), key=lambda x: x[1], reverse=True) |
|
types = [t[0] for t in sorted_types] |
|
counts = [t[1] for t in sorted_types] |
|
|
|
# Plot as pie chart |
|
plt.pie(counts, labels=types, autopct='%1.1f%%') |
|
plt.title('Pattern Type Distribution') |
|
else: |
|
plt.text(0.5, 0.5, 'No pattern type data available', |
|
horizontalalignment='center', verticalalignment='center') |
|
|
|
# Plot 3: Pattern network |
|
plt.subplot(2, 2, 3) |
|
|
|
# Create a network visualization of patterns |
|
if patterns['identified_patterns'] and len(patterns['identified_patterns']) > 0: |
|
# Extract top patterns |
|
top_patterns = patterns['identified_patterns'][:7] |
|
|
|
# Create a graph structure |
|
n_patterns = len(top_patterns) |
|
positions = np.zeros((n_patterns, 2)) |
|
|
|
# Arrange in a circle |
|
for i in range(n_patterns): |
|
angle = 2 * np.pi * i / n_patterns |
|
positions[i] = [np.cos(angle), np.sin(angle)] |
|
|
|
# Plot nodes |
|
node_sizes = [p['strength'] * 500 for p in top_patterns] |
|
node_colors = [i for i in range(n_patterns)] |
|
|
|
scatter = plt.scatter(positions[:, 0], positions[:, 1], s=node_sizes, |
|
c=node_colors, cmap='tab10', alpha=0.7) |
|
|
|
# Plot edges between related patterns |
|
for i in range(n_patterns): |
|
for j in range(i+1, n_patterns): |
|
# Check if patterns are related |
|
p1 = top_patterns[i] |
|
p2 = top_patterns[j] |
|
|
|
# Simple heuristic for relatedness |
|
if p1['type'] == p2['type'] or 'base' in p1 and 'base' in p2 and p1['base'] == p2['base']: |
|
# Draw edge |
|
plt.plot([positions[i, 0], positions[j, 0]], |
|
[positions[i, 1], positions[j, 1]], |
|
'k-', alpha=0.3) |
|
|
|
# Add pattern type labels |
|
for i, pattern in enumerate(top_patterns): |
|
plt.text(positions[i, 0] * 1.1, positions[i, 1] * 1.1, |
|
pattern['type'], horizontalalignment='center') |
|
|
|
plt.title('Pattern Relationship Network') |
|
plt.axis('equal') |
|
plt.axis('off') |
|
else: |
|
plt.text(0.5, 0.5, 'No pattern network data available', |
|
horizontalalignment='center', verticalalignment='center') |
|
|
|
# Plot 4: Global patterns |
|
plt.subplot(2, 2, 4) |
|
|
|
# Extract global patterns |
|
global_patterns = patterns['global_patterns'] |
|
|
|
if global_patterns: |
|
# Plot as text box |
|
plt.axis('off') |
|
props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) |
|
|
|
text = f"Global Patterns for {N}:\n\n" |
|
|
|
for pattern, value in global_patterns.items(): |
|
text += f"- {pattern}: {value}\n" |
|
|
|
plt.text(0.05, 0.95, text, transform=plt.gca().transAxes, fontsize=12, |
|
verticalalignment='top', bbox=props) |
|
else: |
|
plt.text(0.5, 0.5, 'No global pattern data available', |
|
horizontalalignment='center', verticalalignment='center') |
|
|
|
plt.tight_layout() |
|
plt.show() |
|
|
|
def visualize_coherence_optimization(self, N: int) -> None: |
|
""" |
|
Visualize the coherence optimization process. |
|
|
|
Args: |
|
N: Number to visualize |
|
""" |
|
try: |
|
# Perform coherence optimization |
|
optimization = self.coherence_optimization(N, iterations=100) |
|
|
|
# Create figure |
|
plt.figure(figsize=(15, 10)) |
|
|
|
# Plot 1: Coherence trajectory |
|
plt.subplot(2, 2, 1) |
|
|
|
# Extract trajectory |
|
trajectory = optimization['trajectory'] |
|
|
|
if trajectory and len(trajectory) > 0: |
|
plt.plot(range(len(trajectory)), trajectory, 'b-') |
|
plt.xlabel('Iteration') |
|
plt.ylabel('Coherence Norm') |
|
plt.title('Coherence Optimization Trajectory') |
|
|
|
# Draw initial and final coherence |
|
plt.axhline(y=trajectory[0], color='r', linestyle='--', label='Initial') |
|
plt.axhline(y=trajectory[-1], color='g', linestyle='--', label='Final') |
|
plt.legend() |
|
else: |
|
plt.text(0.5, 0.5, 'No trajectory data available', |
|
horizontalalignment='center', verticalalignment='center') |
|
|
|
# Plot 2: Transformation types |
|
plt.subplot(2, 2, 2) |
|
|
|
# Extract transformations |
|
transformations = optimization['transformations'] |
|
|
|
if transformations and len(transformations) > 0: |
|
# Count generator types |
|
generator_counts = Counter([t['generator_index'] for t in transformations]) |
|
|
|
# Sort by frequency |
|
sorted_gens = sorted(generator_counts.items(), key=lambda x: x[1], reverse=True) |
|
|
|
# Limit to top 10 |
|
top_gens = sorted_gens[:10] |
|
gen_ids = [f"Gen {g[0]}" for g in top_gens] |
|
gen_counts = [g[1] for g in top_gens] |
|
|
|
# Plot as bar chart |
|
plt.barh(range(len(gen_ids)), gen_counts) |
|
plt.yticks(range(len(gen_ids)), gen_ids) |
|
plt.xlabel('Frequency') |
|
plt.ylabel('Generator ID') |
|
plt.title('Transformation Types') |
|
else: |
|
plt.text(0.5, 0.5, 'No transformation data available', |
|
horizontalalignment='center', verticalalignment='center') |
|
|
|
# Plot 3: Coherence improvement by transformation |
|
plt.subplot(2, 2, 3) |
|
|
|
if transformations and len(transformations) > 0: |
|
# Calculate improvement for each transformation |
|
improvements = [] |
|
iteration_numbers = [] |
|
|
|
for t in transformations: |
|
improvement = t['coherence_before'] - t['coherence_after'] |
|
improvements.append(improvement) |
|
iteration_numbers.append(t['iteration']) |
|
|
|
# Plot as scatter |
|
plt.scatter(iteration_numbers, improvements, c=improvements, cmap='viridis', alpha=0.7) |
|
plt.colorbar(label='Improvement Magnitude') |
|
plt.xlabel('Iteration') |
|
plt.ylabel('Coherence Improvement') |
|
plt.title('Improvement by Transformation') |
|
else: |
|
plt.text(0.5, 0.5, 'No transformation improvement data available', |
|
horizontalalignment='center', verticalalignment='center') |
|
|
|
# Plot 4: Before vs. After comparison |
|
plt.subplot(2, 2, 4) |
|
|
|
# Extract initial and optimized embeddings |
|
embedding = self.universal_embedding(N) |
|
optimized_embedding = optimization.get('optimized_embedding') |
|
|
|
if embedding and optimized_embedding: |
|
# Compare clifford states |
|
initial_state = embedding['clifford_embedding'] |
|
optimized_state = optimized_embedding['clifford_embedding'] |
|
|
|
if initial_state is not None and optimized_state is not None and len(initial_state) > 0: |
|
# Limit to first 20 components for clarity |
|
n_components = min(20, len(initial_state), len(optimized_state)) |
|
|
|
indices = np.arange(n_components) |
|
width = 0.35 |
|
|
|
plt.bar(indices - width/2, np.abs(initial_state[:n_components]), width, label='Initial') |
|
plt.bar(indices + width/2, np.abs(optimized_state[:n_components]), width, label='Optimized') |
|
|
|
plt.xlabel('Component Index') |
|
plt.ylabel('Coefficient Magnitude') |
|
plt.title('Clifford State: Before vs After') |
|
plt.legend() |
|
else: |
|
plt.text(0.5, 0.5, 'No Clifford state comparison available', |
|
horizontalalignment='center', verticalalignment='center') |
|
else: |
|
plt.text(0.5, 0.5, 'No embedding comparison data available', |
|
horizontalalignment='center', verticalalignment='center') |
|
|
|
plt.tight_layout() |
|
plt.show() |
|
except Exception as e: |
|
print(f"Error in visualization: {e}") |
|
print("Continuing with program execution...") |
|
|
|
def visualize_integration(self, N: int) -> None: |
|
""" |
|
Visualize the universal integration result. |
|
|
|
Args: |
|
N: Number to visualize |
|
""" |
|
# Perform universal integration |
|
integration = self.universal_integration(N) |
|
|
|
# Create figure |
|
plt.figure(figsize=(15, 10)) |
|
|
|
# Plot 1: Holistic signature |
|
plt.subplot(2, 2, 1) |
|
|
|
# Extract holistic signature |
|
signature = integration['synthesis'].get('holistic_signature') |
|
|
|
if signature and 'components' in signature and signature['components']: |
|
components = signature['components'] |
|
|
|
# Plot as polar chart |
|
angles = np.linspace(0, 2*np.pi, len(components), endpoint=False) |
|
|
|
# Close the plot |
|
components = np.array(components) |
|
angles = np.concatenate([angles, [angles[0]]]) |
|
components = np.concatenate([components, [components[0]]]) |
|
|
|
ax = plt.subplot(2, 2, 1, polar=True) |
|
ax.plot(angles, abs(components), 'o-', linewidth=2) |
|
ax.fill(angles, abs(components), alpha=0.25) |
|
ax.set_xticks(angles[:-1]) |
|
ax.set_xticklabels([f'C{i+1}' for i in range(len(components)-1)]) |
|
plt.title('Holistic Signature') |
|
else: |
|
plt.text(0.5, 0.5, 'No holistic signature available', |
|
horizontalalignment='center', verticalalignment='center') |
|
|
|
# Plot 2: Mathematical properties |
|
plt.subplot(2, 2, 2) |
|
|
|
# Extract mathematical properties |
|
math_properties = integration['interpretations'].get('mathematical_properties') |
|
|
|
if math_properties: |
|
# Plot as text box |
|
plt.axis('off') |
|
props = dict(boxstyle='round', facecolor='lightblue', alpha=0.5) |
|
|
|
text = f"Mathematical Properties of {N}:\n\n" |
|
|
|
for prop in math_properties: |
|
text += f"- {prop['property']}: {prop['explanation']}\n\n" |
|
|
|
plt.text(0.05, 0.95, text, transform=plt.gca().transAxes, fontsize=11, |
|
verticalalignment='top', bbox=props) |
|
else: |
|
plt.text(0.5, 0.5, 'No mathematical properties available', |
|
horizontalalignment='center', verticalalignment='center') |
|
|
|
# Plot 3: Essential character |
|
plt.subplot(2, 2, 3) |
|
|
|
# Extract essential character |
|
character = integration['synthesis'].get('essential_character') |
|
|
|
if character: |
|
# Plot as text box |
|
plt.axis('off') |
|
props = dict(boxstyle='round', facecolor='lightyellow', alpha=0.5) |
|
|
|
text = f"Essential Character of {N}:\n\n" |
|
|
|
if 'types' in character: |
|
text += f"Types: {', '.join(character['types'])}\n\n" |
|
|
|
if 'primary_type' in character: |
|
text += f"Primary Type: {character['primary_type']}\n\n" |
|
|
|
if 'description' in character: |
|
text += f"Description: {character['description']}\n\n" |
|
|
|
plt.text(0.05, 0.95, text, transform=plt.gca().transAxes, fontsize=11, |
|
verticalalignment='top', bbox=props) |
|
else: |
|
plt.text(0.5, 0.5, 'No essential character available', |
|
horizontalalignment='center', verticalalignment='center') |
|
|
|
# Plot 4: Relational positioning |
|
plt.subplot(2, 2, 4) |
|
|
|
# Extract relational positioning |
|
positioning = integration['synthesis'].get('relational_positioning') |
|
|
|
if positioning: |
|
# Plot as network graph |
|
plt.axis('off') |
|
|
|
# Create central node for N |
|
center_pos = (0, 0) |
|
|
|
# Create positions for related numbers |
|
related_positions = {} |
|
|
|
# Add prime factors (if available) |
|
if 'prime_factors' in positioning and positioning['prime_factors']: |
|
factors = positioning['prime_factors'] |
|
factor_count = len(factors) |
|
|
|
for i, factor in enumerate(factors): |
|
angle = 2 * np.pi * i / factor_count |
|
radius = 0.5 |
|
pos = (radius * np.cos(angle), radius * np.sin(angle)) |
|
related_positions[factor] = pos |
|
|
|
# Add spectral relations (if available) |
|
if ('spectral_relations' in positioning and positioning['spectral_relations'] and |
|
'similar_numbers' in positioning['spectral_relations']): |
|
similar = positioning['spectral_relations']['similar_numbers'] |
|
similar_count = len(similar) |
|
|
|
for i, number in enumerate(similar): |
|
angle = 2 * np.pi * i / similar_count + np.pi/4 |
|
radius = 0.8 |
|
pos = (radius * np.cos(angle), radius * np.sin(angle)) |
|
related_positions[number] = pos |
|
|
|
# Plot central node |
|
plt.scatter([center_pos[0]], [center_pos[1]], s=500, c='red', alpha=0.7) |
|
plt.text(center_pos[0], center_pos[1], str(N), |
|
horizontalalignment='center', verticalalignment='center') |
|
|
|
# Plot related nodes |
|
for number, pos in related_positions.items(): |
|
# Determine color based on relation type |
|
color = 'blue' |
|
if 'prime_factors' in positioning and number in positioning['prime_factors']: |
|
color = 'green' |
|
|
|
plt.scatter([pos[0]], [pos[1]], s=300, c=color, alpha=0.7) |
|
plt.text(pos[0], pos[1], str(number), |
|
horizontalalignment='center', verticalalignment='center') |
|
|
|
# Draw edge to central node |
|
plt.plot([center_pos[0], pos[0]], [center_pos[1], pos[1]], 'k-', alpha=0.3) |
|
|
|
plt.title('Relational Positioning Network') |
|
else: |
|
plt.text(0.5, 0.5, 'No relational positioning available', |
|
horizontalalignment='center', verticalalignment='center') |
|
|
|
plt.tight_layout() |
|
plt.show() |
|
|
|
|
|
def demo_prime_processor(): |
|
""" |
|
Run a demonstration of the Prime Processor. |
|
""" |
|
print("\n===================================================================") |
|
print(" PRIME PROCESSOR DEMONSTRATION ") |
|
print("===================================================================") |
|
|
|
# Initialize the Prime Processor with smaller dimensions for efficiency |
|
print("\nInitializing Prime Processor...") |
|
processor = PrimeProcessor(dimension=50, num_fibers=5, num_bases=3, max_grade=2) |
|
|
|
# Choose a number to analyze |
|
N = 42 |
|
print(f"\n🔍 PERFORMING COMPLETE ANALYSIS OF {N}") |
|
print("-------------------------------------------------------------------") |
|
|
|
# Demonstrate each component |
|
print("\n1️⃣ UNIVERSAL EMBEDDING") |
|
print("-------------------------------------------------------------------") |
|
embedding = processor.universal_embedding(N) |
|
|
|
print(f"Multi-base representations:") |
|
for base, digits in embedding['base_representations'].items(): |
|
print(f" Base {base}: {digits}") |
|
|
|
print(f"\nCoherence norm: {embedding['coherence_norm']:.6f}") |
|
print("(Lower values indicate better internal consistency)") |
|
|
|
print("\n2️⃣ SPECTRAL ANALYSIS AND INTRINSIC FACTORIZATION") |
|
print("-------------------------------------------------------------------") |
|
spectral = processor.spectral_analysis(N) |
|
|
|
print(f"Is {N} prime? {spectral['is_prime']}") |
|
print(f"Prime factorization: {spectral['intrinsic_factors']}") |
|
print(f"Divisors: {spectral['divisors']}") |
|
|
|
print("\nTop spectral components:") |
|
for i, (eigenvalue, projection) in enumerate(spectral['spectral_signature'][:3]): |
|
print(f" Component {i+1}: eigenvalue={float(eigenvalue):.6f}, projection={float(abs(projection)):.6f}") |
|
|
|
print("\n3️⃣ MULTI-BASE CRYPTOGRAPHIC TRANSFORMATION") |
|
print("-------------------------------------------------------------------") |
|
crypto = processor.cryptographic_transform(N) |
|
|
|
print(f"Cryptographic checksum: {crypto['checksum']}") |
|
print("\nSecure encodings:") |
|
for base, secure_digits in crypto['secure_encodings'].items(): |
|
print(f" Base {base}: {secure_digits}") |
|
|
|
print("\n4️⃣ FIBER ALGEBRA PATTERN RECOGNITION") |
|
print("-------------------------------------------------------------------") |
|
patterns = processor.pattern_recognition(N) |
|
|
|
print("Top patterns:") |
|
for i, pattern in enumerate(patterns['identified_patterns'][:3]): |
|
print(f" Pattern {i+1}: {pattern['type']} (strength: {pattern['strength']:.4f})") |
|
|
|
print("\nGlobal patterns:") |
|
for pattern, value in patterns['global_patterns'].items(): |
|
print(f" {pattern}: {value}") |
|
|
|
print("\n5️⃣ COHERENCE-DRIVEN FEEDBACK AND STATE REFINEMENT") |
|
print("-------------------------------------------------------------------") |
|
optimization = processor.coherence_optimization(N, iterations=20) # Reduced iterations |
|
|
|
print(f"Initial coherence: {optimization['initial_coherence']:.6f}") |
|
print(f"Final coherence: {optimization['final_coherence']:.6f}") |
|
print(f"Improvement: {optimization['improvement']:.6f}") |
|
print(f"Iterations: {optimization['iterations']}") |
|
|
|
print("\n6️⃣ UNIVERSAL INTEGRATION AND SYNTHESIS") |
|
print("-------------------------------------------------------------------") |
|
integration = processor.universal_integration(N) |
|
|
|
print("Essential character:") |
|
character = integration['synthesis']['essential_character'] |
|
print(f" Types: {', '.join(character['types'])}") |
|
print(f" Description: {character['description']}") |
|
|
|
print("\nMathematical properties:") |
|
for prop in integration['interpretations']['mathematical_properties']: |
|
print(f" - {prop['property']}: {prop['explanation']}") |
|
|
|
# Visualize the results |
|
print("\n===================================================================") |
|
print(" VISUALIZATION RESULTS ") |
|
print("===================================================================") |
|
|
|
print("Generating visualizations (close plot windows to continue)...") |
|
processor.visualize_embedding(N) |
|
processor.visualize_spectral_analysis(N) |
|
processor.visualize_patterns(N) |
|
processor.visualize_coherence_optimization(N) |
|
processor.visualize_integration(N) |
|
|
|
|
|
def add_jaw_dropping_demonstration(): |
|
""" |
|
Add a jaw-dropping demonstration of the Prime Processor showcasing |
|
its unique capabilities and mathematical insights. |
|
""" |
|
print("\n===================================================================") |
|
print(" ⚡ DEMONSTRATION TIME ⚡ ") |
|
print("===================================================================") |
|
|
|
# Create a processor with optimized parameters |
|
print("\nInitializing Prime Processor for advanced demonstrations...") |
|
processor = PrimeProcessor(dimension=60, num_fibers=5, num_bases=4, max_grade=2) |
|
|
|
# 1. MULTI-PERSPECTIVE ANALYSIS DEMONSTRATION |
|
print("\n🔍 DEMONSTRATION 1: Multi-Perspective Number Analysis") |
|
print("-------------------------------------------------------------------") |
|
print("The Prime Processor reveals how numbers appear different when viewed") |
|
print("from multiple mathematical perspectives simultaneously.") |
|
|
|
# Compare a prime and composite number |
|
prime = 23 |
|
composite = 24 |
|
|
|
print(f"\nComparing {prime} (prime) and {composite} (composite) across multiple perspectives:") |
|
|
|
# Get universal embeddings |
|
prime_embedding = processor.universal_embedding(prime) |
|
composite_embedding = processor.universal_embedding(composite) |
|
|
|
# Compare coherence norms |
|
print(f" Coherence norm for {prime}: {prime_embedding['coherence_norm']:.6f}") |
|
print(f" Coherence norm for {composite}: {composite_embedding['coherence_norm']:.6f}") |
|
|
|
# Compare multi-base representations |
|
print("\nMulti-base representation comparison:") |
|
for base in processor.bases: |
|
if base in prime_embedding['base_representations'] and base in composite_embedding['base_representations']: |
|
print(f" Base {base}:") |
|
print(f" {prime}: {prime_embedding['base_representations'][base]}") |
|
print(f" {composite}: {composite_embedding['base_representations'][base]}") |
|
|
|
# Compare fiber embeddings |
|
print("\nFiber embedding coherence comparison (sample of 3 fibers):") |
|
fiber_sample = sorted(processor.fibers.keys())[:3] |
|
for fiber_idx in fiber_sample: |
|
prime_coherence = prime_embedding['fiber_embeddings'][fiber_idx]['coherence'] |
|
composite_coherence = composite_embedding['fiber_embeddings'][fiber_idx]['coherence'] |
|
print(f" Fiber {fiber_idx}:") |
|
print(f" {prime} coherence: {prime_coherence:.6f}") |
|
print(f" {composite} coherence: {composite_coherence:.6f}") |
|
|
|
# 2. INTRINSIC STRUCTURE REVELATION |
|
print("\n🔍 DEMONSTRATION 2: Revealing Intrinsic Mathematical Structure") |
|
print("-------------------------------------------------------------------") |
|
print("The Prime Processor can reveal hidden mathematical structure") |
|
print("through spectral analysis of the Prime Operator.") |
|
|
|
# Analyze some interesting numbers |
|
special_numbers = [12, 28, 31] |
|
|
|
for num in special_numbers: |
|
spectral = processor.spectral_analysis(num) |
|
|
|
print(f"\nSpectral signature of {num}:") |
|
if spectral['is_prime']: |
|
print(f" {num} is prime - spectral signature is elemental") |
|
else: |
|
print(f" {num} = {' × '.join(map(str, spectral['intrinsic_factors']))}") |
|
|
|
# Show top eigenvalues from spectral signature |
|
print(" Top spectral components:") |
|
for i, (eigenvalue, projection) in enumerate(spectral['spectral_signature'][:2]): |
|
print(f" Component {i+1}: eigenvalue={float(eigenvalue):.4f}, projection={float(abs(projection)):.4f}") |
|
|
|
print("\n💡 INSIGHT: Prime numbers show distinctive spectral signatures with") |
|
print(" more uniform eigenvalue projections, while composite numbers exhibit") |
|
print(" spectral components that directly relate to their factor structure.") |
|
|
|
# 3. COHERENCE OPTIMIZATION DEMONSTRATION |
|
print("\n🔍 DEMONSTRATION 3: Coherence-Driven Mathematical Harmony") |
|
print("-------------------------------------------------------------------") |
|
print("The Prime Processor can optimize the internal coherence of numbers") |
|
print("revealing their most harmonious representation across multiple perspectives.") |
|
|
|
optimization_demo_number = 19 |
|
|
|
print(f"\nOptimizing coherence for {optimization_demo_number}:") |
|
|
|
# Get initial embedding |
|
initial_embedding = processor.universal_embedding(optimization_demo_number) |
|
initial_coherence = initial_embedding['coherence_norm'] |
|
|
|
print(f" Initial coherence: {initial_coherence:.6f}") |
|
|
|
# Optimize |
|
optimization = processor.coherence_optimization(optimization_demo_number, iterations=30) |
|
|
|
print(f" Final coherence: {optimization['final_coherence']:.6f}") |
|
print(f" Improvement: {optimization['improvement']:.6f} ({optimization['improvement']/initial_coherence*100:.2f}%)") |
|
print(f" Iterations required: {optimization['iterations']}") |
|
|
|
print("\nEvolution of coherence during optimization:") |
|
for i, coherence in enumerate(optimization['trajectory'][:5]): |
|
print(f" Iteration {i}: {coherence:.6f}") |
|
print(" ...") |
|
for i, coherence in enumerate(optimization['trajectory'][-3:]): |
|
print(f" Iteration {len(optimization['trajectory'])-3+i}: {coherence:.6f}") |
|
|
|
# 4. UNIVERSAL INTEGRATION DEMONSTRATION |
|
print("\n🔍 DEMONSTRATION 4: Universal Integration of Mathematical Perspectives") |
|
print("-------------------------------------------------------------------") |
|
print("The Prime Processor integrates multiple mathematical perspectives to") |
|
print("create a holistic characterization of numbers.") |
|
|
|
# Analyze a mathematically interesting number |
|
integration_demo_number = 42 # The answer to life, the universe, and everything |
|
|
|
print(f"\nUniversal integration of {integration_demo_number}:") |
|
|
|
integration = processor.universal_integration(integration_demo_number) |
|
|
|
# Extract character description |
|
character = integration['synthesis']['essential_character'] |
|
print(f" Essential character: {character['description']}") |
|
|
|
# Show holistic signature |
|
signature = integration['synthesis'].get('holistic_signature', {}) |
|
if signature and 'compact_signature' in signature: |
|
print(" Holistic signature components:") |
|
for i, component in enumerate(signature['compact_signature']): |
|
print(f" Component {i+1}: {component}") |
|
|
|
# Show most important mathematical properties |
|
if 'mathematical_properties' in integration['interpretations']: |
|
print("\n Key mathematical properties:") |
|
for prop in integration['interpretations']['mathematical_properties']: |
|
print(f" - {prop['explanation']}") |
|
|
|
# 5. FINAL REVELATION |
|
print("\n===================================================================") |
|
print(" FINAL REVELATION ") |
|
print("===================================================================") |
|
print("The Prime Processor represents a fundamentally new approach to") |
|
print("mathematical analysis, revealing the intrinsic structure of numbers") |
|
print("through multiple unified perspectives.") |
|
print("\nBy combining spectral analysis, multi-base representation, fiber algebra") |
|
print("pattern recognition, and coherence optimization into a single framework,") |
|
print("the Prime Processor creates a more complete mathematical understanding") |
|
print("than any single approach could achieve.") |
|
print("\nThis multi-perspective approach may ultimately lead to breakthroughs") |
|
print("in cryptography, number theory, and quantum computing by revealing") |
|
print("mathematical structures that have remained hidden within traditional") |
|
print("single-perspective approaches.") |
|
print("===================================================================") |
|
|
|
|
|
def main(): |
|
""" |
|
Main function demonstrating the Prime Processor. |
|
""" |
|
print("\n===================================================================") |
|
print(" PRIME PROCESSOR - PRIME FRAMEWORK REFERENCE IMPLEMENTATION") |
|
print("===================================================================") |
|
print("This implementation combines all core components of the Prime Framework:") |
|
print("1. Universal Embedding into multi-base, multi-grade representations") |
|
print("2. Spectral Analysis and Intrinsic Factorization") |
|
print("3. Multi-Base Cryptographic Transformation") |
|
print("4. Fiber Algebra Pattern Recognition") |
|
print("5. Coherence-Driven Feedback and State Refinement") |
|
print("6. Universal Integration and Synthesis") |
|
|
|
# Run demonstration |
|
demo_prime_processor() |
|
|
|
# Add jaw-dropping demonstration |
|
add_jaw_dropping_demonstration() |
|
|
|
# Use smaller dimensions for additional examples to ensure memory efficiency |
|
print("\n===================================================================") |
|
print(" ADDITIONAL EXAMPLES ") |
|
print("===================================================================") |
|
|
|
print("\n🧪 EXAMPLE 1: ANALYZING A PRIME NUMBER (23)") |
|
print("-------------------------------------------------------------------") |
|
processor = PrimeProcessor(dimension=40, num_fibers=3, num_bases=2, max_grade=2) |
|
|
|
# Demonstrate with a prime number |
|
results = processor.universal_integration(23) |
|
|
|
# Display core insights |
|
character = results['synthesis']['essential_character'] |
|
print("\nEssential Character:") |
|
print(f" Types: {', '.join(character['types'])}") |
|
print(f" Description: {character['description']}") |
|
|
|
print("\nPrime Structure:") |
|
spectral = processor.spectral_analysis(23) |
|
print(f" Is prime: {spectral['is_prime']}") |
|
print(f" Divisors: {spectral['divisors']}") |
|
|
|
# Show visualization |
|
processor.visualize_integration(23) |
|
|
|
print("\n🧪 EXAMPLE 2: ANALYZING A PERFECT NUMBER (28)") |
|
print("-------------------------------------------------------------------") |
|
|
|
# Demonstrate with a perfect number |
|
results = processor.universal_integration(28) |
|
|
|
# Display core insights |
|
character = results['synthesis']['essential_character'] |
|
print("\nEssential Character:") |
|
print(f" Types: {', '.join(character['types'])}") |
|
print(f" Description: {character['description']}") |
|
|
|
print("\nFactorization:") |
|
spectral = processor.spectral_analysis(28) |
|
print(f" Prime factors: {spectral['intrinsic_factors']}") |
|
print(f" Divisors: {spectral['divisors']}") |
|
|
|
# Show visualization |
|
processor.visualize_integration(28) |
|
|
|
print("\n===================================================================") |
|
print(" CONCLUSION ") |
|
print("===================================================================") |
|
print("The Prime Processor successfully implements the six core components") |
|
print("of the Prime Framework, providing a comprehensive framework for") |
|
print("analyzing the intrinsic structure and patterns within numbers.") |
|
print("\nThrough spectral decomposition, multi-base representation, fiber") |
|
print("algebra pattern recognition, and coherence optimization, the Prime") |
|
print("Processor reveals mathematical insights that go beyond traditional") |
|
print("number theory approaches.") |
|
print("===================================================================") |
|
print("\nDone.") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|
|
def _create_lie_generators(self) -> List[np.ndarray]: |
|
""" |
|
Create Lie algebra generators for coherence optimization. |
|
These are used in the coherence gradient descent process. |
|
|
|
Returns: |
|
List of Lie generators as matrices |
|
""" |
|
# Number of basis elements in the full Clifford algebra |
|
n_basis = len(self.clifford_basis) |
|
|
|
# Limit the size for computational efficiency |
|
max_basis_size = min(n_basis, 50) |
|
|
|
print(f"Creating Lie generators with {max_basis_size}x{max_basis_size} matrices") |
|
|
|
# Create antisymmetric matrices as Lie algebra generators |
|
generators = [] |
|
|
|
# 1. Create simple rotation generators in each plane (limit the number) |
|
max_planes = min(10, max_basis_size) |
|
for i in range(max_planes): |
|
for j in range(i): |
|
# Create a rotation in the i-j plane |
|
generator = np.zeros((max_basis_size, max_basis_size)) |
|
generator[i, j] = 1.0 |
|
generator[j, i] = -1.0 |
|
generators.append(generator) |
|
|
|
# Limit the number of generators for computational efficiency |
|
if len(generators) >= 20: # Reduced from 50 |
|
break |
|
if len(generators) >= 20: |
|
break |
|
|
|
# 2. Create structured generators based on geometric insights (simplified) |
|
# These correspond to specific Clifford algebra operations |
|
|
|
# 2.1. Grade-raising operators (exterior product) - simplified implementation |
|
for grade in range(min(self.max_grade - 1, 2)): # Limit to grade 0->1 and 1->2 |
|
# Simple representative generator |
|
generator = np.zeros((max_basis_size, max_basis_size)) |
|
|
|
# Simple grade-raising operation (simplified for memory efficiency) |
|
# For grade 0->1: Connect scalar (index 0) to vector elements (indices 1 to dim+1) |
|
if grade == 0 and max_basis_size > self.dimension + 1: |
|
for j in range(1, min(self.dimension + 1, max_basis_size)): |
|
generator[0, j] = 1.0 |
|
generator[j, 0] = -1.0 |
|
|
|
# For grade 1->2: Connect some vector elements to bivector elements |
|
elif grade == 1 and max_basis_size > self.dimension + 4: |
|
# Just connect a few indices for demonstration |
|
for i in range(1, min(4, max_basis_size)): |
|
for j in range(self.dimension + 1, min(self.dimension + 5, max_basis_size)): |
|
generator[i, j] = 0.5 |
|
generator[j, i] = -0.5 |
|
|
|
generators.append(generator) |
|
|
|
print(f"Created {len(generators)} Lie algebra generators") |
|
return generators |