Last active
June 5, 2021 12:03
-
-
Save adrianseeley/9155206 to your computer and use it in GitHub Desktop.
JavaScript Normalized Particle Swarm Optimization Implementation - Search for an N-dimensional vector of components between -1 and +1 that optimizes a given function to a fitness of 0.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// based on http://msdn.microsoft.com/en-us/magazine/hh335067.aspx | |
// usage example at bottom | |
function pso (number_of_dimensions, function_to_optimize, number_of_particles, number_of_iterations, fitness_threshold, inertia_weight, cognitive_weight, social_weight) { | |
var particles = []; | |
var swarm_best_position = []; | |
var swarm_best_fitness = null; | |
for (var p = 0; p < number_of_particles; p++) { | |
particles.push({ | |
particle_position: [], | |
particle_velocity: [], | |
particle_fitness: null, | |
particle_best_position: [], | |
particle_best_fitness: null, | |
}); | |
for (var d = 0; d < number_of_dimensions; d++) { | |
particles[p].particle_position.push((Math.random() * 2) - 1); | |
particles[p].particle_best_position.push(particles[p].particle_position[d]); | |
particles[p].particle_velocity.push((Math.random() * 2) - 1); | |
} | |
particles[p].particle_fitness = function_to_optimize(particles[p].particle_position); | |
if (swarm_best_fitness == null || particles[p].particle_fitness < swarm_best_fitness) { | |
swarm_best_fitness = particles[p].particle_fitness; | |
swarm_best_position = []; | |
for (var copy = 0; copy < particles[p].particle_position.length; copy++) swarm_best_position.push(particles[p].particle_position[copy]); | |
} | |
} | |
for (var i = 0; i < number_of_iterations && swarm_best_fitness > fitness_threshold; i++) { | |
for (var p = 0; p < particles.length; p++) { | |
for (var component = 0; component < particles[p].particle_velocity.length; component++) { | |
particles[p].particle_velocity[component] = | |
Math.max(-1, Math.min(1, | |
(inertia_weight * particles[p].particle_velocity[component]) + | |
(cognitive_weight * Math.random() * (particles[p].particle_best_position[component] - particles[p].particle_position[component])) + | |
(social_weight * Math.random() * (swarm_best_position[component] - particles[p].particle_position[component])))); | |
particles[p].particle_position[component] = Math.max(-1, Math.min(1, particles[p].particle_position[component] + particles[p].particle_velocity[component])); | |
} | |
particles[p].particle_fitness = function_to_optimize(particles[p].particle_position); | |
if (particles[p].particle_fitness < particles[p].particle_best_fitness) { | |
particles[p].particle_best_fitness = particles[p].particle_fitness; | |
particles[p].particle_best_position = []; | |
for (var copy = 0; copy < particles[p].particle_position.length; copy++) particles[p].particle_best_position.push(particles[p].particle_position[copy]); | |
} | |
if (particles[p].particle_fitness < swarm_best_fitness) { | |
swarm_best_fitness = particles[p].particle_fitness; | |
swarm_best_position = []; | |
for (var copy = 0; copy < particles[p].particle_position.length; copy++) swarm_best_position.push(particles[p].particle_position[copy]); | |
} | |
} | |
} | |
return {number_of_iterations: i, swarm_best_position: swarm_best_position, swarm_best_fitness: swarm_best_fitness}; | |
}; | |
// usage example | |
var result = pso(2, function (position) { return (position[0] * position[0]) + (position[1] * position[1]); }, 10, 10000, 0, 0.729, 1.49445, 1.49445); | |
console.log(result); // {number_of_iterations: 2867, swarm_best_position: [ 0, 0 ], swarm_best_fitness: 0} |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<html> | |
<meta charset="utf-8"> | |
<body> | |
<canvas id="canvas"></canvas> | |
<script type="text/javascript"> | |
var canvas = document.getElementById('canvas'); | |
canvas.width = window.innerWidth * 0.95; | |
canvas.height = window.innerHeight * 0.95; | |
var ctx = canvas.getContext('2d'); | |
ctx.Clear = function () { | |
ctx.clearRect(0, 0, canvas.width, canvas.height); | |
}; | |
ctx.Dot = function (cx, cy, r, color) { | |
ctx.beginPath(); | |
ctx.arc(cx, cy, r, 0, 2 * Math.PI, false); | |
ctx.fillStyle = color; | |
ctx.fill(); | |
}; | |
ctx.nDot = function (ncx, ncy, nr, color) { | |
ctx.Dot(ncx * canvas.width, canvas.height - (ncy * canvas.height), nr * canvas.height, color); | |
}; | |
ctx.Circle = function (cx, cy, r, color, thickness) { | |
ctx.beginPath(); | |
ctx.strokeStyle = color; | |
ctx.lineWidth = thickness; | |
ctx.arc(cx, cy, r, 0, 2 * Math.PI, false); | |
ctx.stroke(); | |
}; | |
ctx.nCircle = function (ncx, ncy, nr, color, thickness) { | |
ctx.Circle(ncx * canvas.width, canvas.height - (ncy * canvas.height), nr * canvas.height, color, thickness); | |
}; | |
ctx.Line = function (x1, y1, x2, y2, width, color) { | |
ctx.beginPath(); | |
ctx.moveTo(x1, y1); | |
ctx.lineTo(x2, y2); | |
ctx.lineWidth = width; | |
ctx.strokeStyle = color; | |
ctx.stroke(); | |
}; | |
ctx.nLine = function (nx1, ny1, nx2, ny2, width, color) { | |
ctx.Line(nx1 * canvas.width, canvas.height - (ny1 * canvas.height), nx2 * canvas.width, canvas.height - (ny2 * canvas.height), width, color); | |
}; | |
ctx.Path = function (p, width, color) { | |
ctx.beginPath(); | |
ctx.lineWidth = width; | |
ctx.strokeStyle = color; | |
ctx.moveTo(p[0].x, p[0].y); | |
for (var i = 1; i < p.length; i++) { | |
ctx.lineTo(p[i].x, p[i].y); | |
} | |
ctx.stroke(); | |
}; | |
ctx.nPath = function (np, width, color) { | |
ctx.beginPath(); | |
ctx.moveTo(np[0].nx * canvas.width, np[0].ny * canvas.height); | |
for (var i = 1; i < np.length; i++) { | |
ctx.lineTo(np[i].nx * canvas.width, canvas.height - (np[i].ny * canvas.height)); | |
} | |
ctx.lineWidth = width; | |
ctx.strokeStyle = color; | |
ctx.stroke(); | |
}; | |
ctx.Text = function (string, x, y, color) { | |
ctx.beginPath(); | |
ctx.font = '20px monospace'; | |
ctx.fillStyle = color; | |
ctx.fillText(string, x, y); | |
}; | |
ctx.nText = function (string, nx, ny, color) { | |
ctx.Text(string, nx * canvas.width, canvas.height - (ny * canvas.height), color); | |
}; | |
function draw_particle_graph (particles, swarm_best_fitness, swarm_best_position, iteration) { | |
var fitness_max = 0; | |
for (var p = 0; p < particles.length; p++) { | |
if (particles[p].particle_fitness > fitness_max) { | |
fitness_max = particles[p].particle_fitness; | |
} | |
} | |
ctx.Clear(); | |
// outer circle | |
ctx.nCircle(0.5, 0.5, 0.45, 'black', 1); | |
// inner circles | |
for (var c = 0; c < 3; c++) ctx.nCircle(0.5, 0.5, ((0.45 / 4) * c) + (0.45 / 4), 'grey', 0.3); | |
// postive line | |
ctx.nLine(0.5, 0.5, 0.5, 0.95, 1, 'black'); | |
// zero line | |
ctx.nLine(0.5, 0.5, 0.5, 0.05, 0.3, 'grey'); | |
// origin 0 | |
ctx.nText('0', 0.5, 0.5, 'black'); | |
//dimensional 0 | |
ctx.nText('0', 0.5, 0.055, 'grey'); | |
// fitness max marker | |
ctx.nText('+' + fitness_max, 0.5, 0.96, 'black'); | |
// fitness best market | |
ctx.nText('Best(+' + swarm_best_fitness + ')', 0.65, 0.9, 'black'); | |
ctx.nText('Iter(' + iteration + ')', 0.2, 0.9, 'black'); | |
// -1 dimensional marker | |
ctx.nText('-1↑', 0.2, 0.5, 'grey'); | |
ctx.nText(' 0↓', 0.2, 0.45, 'grey'); | |
// +1 dimensional marker | |
ctx.nText('+1↑', 0.77, 0.5, 'grey'); | |
ctx.nText(' 0↓', 0.77, 0.45, 'grey'); | |
var x_scale_fix = canvas.height / canvas.width; | |
for (var p = 0; p < particles.length; p++) { | |
var normalized_radial_magnitude = (particles[p].particle_fitness / fitness_max) * 0.45; | |
var last_pcx = null; | |
var last_pcy = null; | |
for (var component = 0; component < particles[p].particle_position.length; component++) { | |
var pcx = 0.5 + (Math.sin((1 - particles[p].particle_position[component]) * Math.PI) * normalized_radial_magnitude * x_scale_fix); | |
var pcy = 0.5 + (Math.cos((1 - particles[p].particle_position[component]) * Math.PI) * normalized_radial_magnitude); | |
var color = 'hsl(' + (360 - Math.floor((p / particles.length) * 360)) + ', 50%, 50%)'; | |
ctx.nDot(pcx, pcy, 0.004, color); | |
if (component > 0) { | |
ctx.nLine(last_pcx, last_pcy, pcx, pcy, 1, color); | |
} | |
last_pcx = pcx; | |
last_pcy = pcy; | |
} | |
} | |
console.log(canvas.toDataURL().length) | |
}; | |
function pso (speed_limit, number_of_dimensions, function_to_optimize, number_of_particles, number_of_iterations, fitness_threshold, inertia_weight, cognitive_weight, social_weight, fps, cb) { | |
var particles = []; | |
var swarm_best_position = []; | |
var swarm_best_fitness = null; | |
for (var p = 0; p < number_of_particles; p++) { | |
particles.push({ | |
particle_position: [], | |
particle_velocity: [], | |
particle_fitness: null, | |
particle_best_position: [], | |
particle_best_fitness: null, | |
}); | |
for (var d = 0; d < number_of_dimensions; d++) { | |
particles[p].particle_position.push((Math.random() * 2) - 1); | |
particles[p].particle_best_position.push(particles[p].particle_position[d]); | |
particles[p].particle_velocity.push((Math.random() * 2) - 1); | |
} | |
particles[p].particle_fitness = function_to_optimize(particles[p].particle_position); | |
if (swarm_best_fitness == null || particles[p].particle_fitness < swarm_best_fitness) { | |
swarm_best_fitness = particles[p].particle_fitness; | |
swarm_best_position = []; | |
for (var copy = 0; copy < particles[p].particle_position.length; copy++) swarm_best_position.push(particles[p].particle_position[copy]); | |
} | |
} | |
var i = 0; | |
function iter () { | |
if (i < number_of_iterations && swarm_best_fitness > fitness_threshold) { | |
draw_particle_graph(particles, swarm_best_fitness, swarm_best_position, i); | |
// you must be incredibly careful to update all velocities, | |
// then after ALL velocities have been updated can positions | |
// then be updated, otherwise you get a trailing effect | |
for (var p = 0; p < particles.length; p++) { | |
for (var component = 0; component < particles[p].particle_velocity.length; component++) { | |
particles[p].particle_velocity[component] = | |
Math.max(-1 / speed_limit, Math.min(1 / speed_limit, | |
(inertia_weight * particles[p].particle_velocity[component]) + | |
(cognitive_weight * (Math.random() * 0.01) * (particles[p].particle_best_position[component] - particles[p].particle_position[component])) + | |
(social_weight * (Math.random() * 0.01) * (swarm_best_position[component] - particles[p].particle_position[component])))); | |
} | |
} | |
for (var p = 0; p < particles.length; p++) { | |
for (var component = 0; component < particles[p].particle_velocity.length; component++) { | |
particles[p].particle_position[component] = Math.max(-1, Math.min(1, particles[p].particle_position[component] + particles[p].particle_velocity[component])); | |
} | |
particles[p].particle_fitness = function_to_optimize(particles[p].particle_position); | |
if (particles[p].particle_fitness < particles[p].particle_best_fitness) { | |
particles[p].particle_best_fitness = particles[p].particle_fitness; | |
particles[p].particle_best_position = []; | |
for (var copy = 0; copy < particles[p].particle_position.length; copy++) particles[p].particle_best_position.push(particles[p].particle_position[copy]); | |
} | |
if (particles[p].particle_fitness < swarm_best_fitness) { | |
swarm_best_fitness = particles[p].particle_fitness; | |
swarm_best_position = []; | |
for (var copy = 0; copy < particles[p].particle_position.length; copy++) swarm_best_position.push(particles[p].particle_position[copy]); | |
} | |
} | |
i++; | |
return setTimeout(iter, 1000 / fps); | |
} else { | |
return cb({number_of_iterations: i, swarm_best_position: swarm_best_position, swarm_best_fitness: swarm_best_fitness}); | |
} | |
}; | |
iter(); | |
}; | |
var result = pso(10, 10, function (position) { | |
var total = 0; | |
for (var p = 0; p < position.length; p++) total += Math.pow(position[p], 2); | |
return total; | |
}, 1000, 100000, 0, 0.729, 1.49445, 1.49445, 10000, function (result) {console.log(result);}); | |
</script> | |
<body> | |
<html> | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Copied to Code Pen: http://codepen.io/anon/pen/vLkzd