Created
February 2, 2022 11:43
-
-
Save achetverikov/c63b307dcd1042db4fad7697ceffe01a to your computer and use it in GitHub Desktop.
Topic modeling of ECVP 21 abstracts
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(data.table) | |
library(xml2) | |
library(stm) | |
library(quanteda) | |
library(gofastr) | |
library(stopwords) | |
library(spacyr) | |
library(quanteda) | |
library(quanteda.textplots) | |
library(Hmisc) | |
abstracts_xml<-read_xml( 'https://ecvp2021.org/programme/all.xml', quiet = F) | |
abstracts_list <- as_list(abstracts_xml) | |
abstract_texts <- lapply(abstracts_list$abstracts, \(x) x$text[[1]][[1]]) | |
abstract_texts <- unname(unlist(abstract_texts)) | |
my_stopwords <- prep_stopwords(c(stopwords('en'),stopwords('SMART'),'group','participant','subject','test','result','show','use','display','found','find','demonstrate','human','differ','study','studied','perform', 'test','experiment','correlat','one','two','row','three','csv','can','task','participants','results','presented','performance','perception','different','response','responses','condition','conditions','observers','suggest','suggests','informed','compared','measured','experiment','processed','ms','e.g.','investigate','increase','decrease','reveal','vary','discuss','stimulus','open','involve', 'trial','hz')) | |
spacy_initialize(virtualenv = 'C:/Users/andche/spacy2') | |
txt_parsed <- spacy_parse(abstract_texts, tag = TRUE) | |
txt_parsed$token <- ifelse(txt_parsed$tag %in% c("NNS",'VBD','VBN'), | |
txt_parsed$lemma, | |
txt_parsed$token) | |
n_grams <- tokens_ngrams(tokens(as.tokens(txt_parsed[txt_parsed$pos %in% c('NOUN','ADJ','VERB') & txt_parsed$lemma %nin% my_stopwords,], use_lemma = T), remove_punct = TRUE, remove_symbols = T, remove_separators = T, remove_numbers = T), n = 1:3, concatenator = '_', skip = 0:1) | |
dfmat <- dfm(n_grams, remove = my_stopwords) | |
dfmat_trimmed <- dfm_trim(dfmat, min_termfreq = 20, min_docfreq = 15) | |
textplot_wordcloud(dfmat_trimmed, min_size = 4, max_size = 16, random_color = T) | |
lda_res <- stm(dfmat_trimmed, K = 30) | |
par(cex = .5) | |
res = 240 | |
ragg::agg_png('ecvp_topics.png', width = 10*res, height = 8*res, res = res) | |
plot(lda_res, labeltype = 'frex', n = 5, main = 'Specific words', frexw=0.9) | |
dev.off() | |
plot(lda_res, labeltype = 'prob', n = 5, main = 'Most probable words') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment