Last active
September 27, 2023 16:03
-
-
Save abhijeet-talaulikar/814822a85ad13bded944c6f608a0ace9 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def removal_effects(df, conversion_rate): | |
removal_effects_dict = {} | |
channels = [channel for channel in df.columns if channel not in ['Start', | |
'Null', | |
'Activation']] | |
for channel in channels: | |
removal_df = df.drop(channel, axis=1).drop(channel, axis=0) | |
for column in removal_df.columns: | |
row_sum = np.sum(list(removal_df.loc[column])) | |
null_pct = float(1) - row_sum | |
if null_pct != 0: | |
removal_df.loc[column]['Null'] = null_pct | |
removal_df.loc['Null']['Null'] = 1.0 | |
R = removal_df[ | |
['Null', 'Activation']].drop(['Null', 'Activation'], axis=0) | |
Q = removal_df.drop( | |
['Null', 'Activation'], axis=1).drop(['Null', 'Activation'], axis=0) | |
I = np.identity(len(Q.columns)) | |
N = np.linalg.inv( | |
I - Q.to_numpy() | |
) | |
removal_dot_prod = np.dot(N, R.to_numpy()) | |
removal_cvr = pd.DataFrame(removal_dot_prod, | |
index=R.index)[[1]].loc['Start'].values[0] | |
removal_effect = 1 - removal_cvr / conversion_rate | |
removal_effects_dict[channel] = removal_effect | |
return removal_effects_dict | |
removal_effects_dict = removal_effects(trans_matrix, activation_rate) | |
def removal_effect_pct(removal_effects, total_activations): | |
re_sum = np.sum(list(removal_effects.values())) | |
return {k: (v / re_sum) * total_activations for k, v in removal_effects.items()} | |
attributions = removal_effect_pct(removal_effects_dict, total_activations) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment