Last active
September 18, 2017 18:17
-
-
Save Zackory/fc32b1876aadb3f9aca1 to your computer and use it in GitHub Desktop.
Caffe Image Classification C++
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <cuda_runtime.h> | |
#include <cstring> | |
#include <cstdlib> | |
#include <vector> | |
#include <string> | |
#include <iostream> | |
#include <stdio.h> | |
#include "caffe/caffe.hpp" | |
#include "caffe/util/io.hpp" | |
#include "caffe/blob.hpp" | |
using namespace caffe; | |
using namespace std; | |
int main(int argc, char** argv) { | |
if (argc < 3 || argc > 5) { | |
LOG(ERROR) << "test_net model [CPU/GPU] [Device ID]"; | |
return 1; | |
} | |
Caffe::set_phase(Caffe::TEST); | |
//Setting CPU or GPU | |
if (argc >= 4 && strcmp(argv[3], "GPU") == 0) { | |
Caffe::set_mode(Caffe::GPU); | |
int device_id = 0; | |
if (argc == 5) { | |
device_id = atoi(argv[4]); | |
} | |
Caffe::SetDevice(device_id); | |
LOG(ERROR) << "Using GPU #" << device_id; | |
} else { | |
LOG(ERROR) << "Using CPU"; | |
Caffe::set_mode(Caffe::CPU); | |
} | |
//get the net | |
Net<float> caffe_test_net(argv[1]); | |
//get trained net | |
caffe_test_net.CopyTrainedLayersFrom(argv[2]); | |
// Run ForwardPrefilled | |
float loss; | |
const vector<Blob<float>*>& result = caffe_test_net.ForwardPrefilled(&loss); | |
// Now result will contain the argmax results. | |
const float* argmaxs = result[0]->cpu_data(); | |
for (int i = 0; i < result[0]->num(); ++i) { | |
LOG(INFO) << " Image: "<< i << " class:" << argmaxs[i]; | |
} | |
return 0; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment