Last active
March 7, 2020 16:39
-
-
Save Warvito/ba067d3d6eefed3ae3259cafa7ce689c to your computer and use it in GitHub Desktop.
PixelCNN Architecture
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class ResidualBlock(keras.Model): | |
"""Residual blocks that compose pixelCNN | |
Blocks of layers with 3 convolutional layers and one residual connection. | |
Based on Figure 5 from [1] where h indicates number of filters. | |
Refs: | |
[1] - Oord, A. V. D., Kalchbrenner, N., & Kavukcuoglu, K. (2016). Pixel | |
recurrent neural networks. arXiv preprint arXiv:1601.06759. | |
""" | |
def __init__(self, h): | |
super(ResidualBlock, self).__init__(name='') | |
self.conv2a = keras.layers.Conv2D(filters=h, kernel_size=1, strides=1) | |
self.conv2b = MaskedConv2D(mask_type='B', filters=h, kernel_size=3, strides=1) | |
self.conv2c = keras.layers.Conv2D(filters=2 * h, kernel_size=1, strides=1) | |
def call(self, input_tensor): | |
x = nn.relu(input_tensor) | |
x = self.conv2a(x) | |
x = nn.relu(x) | |
x = self.conv2b(x) | |
x = nn.relu(x) | |
x = self.conv2c(x) | |
x += input_tensor | |
return x | |
# Create PixelCNN model | |
inputs = keras.layers.Input(shape=(height, width, n_channel)) | |
x = MaskedConv2D(mask_type='A', filters=128, kernel_size=7, strides=1)(inputs) | |
for i in range(15): | |
x = ResidualBlock(h=64)(x) | |
x = keras.layers.Activation(activation='relu')(x) | |
x = keras.layers.Conv2D(filters=128, kernel_size=1, strides=1)(x) | |
x = keras.layers.Activation(activation='relu')(x) | |
x = keras.layers.Conv2D(filters=128, kernel_size=1, strides=1)(x) | |
x = keras.layers.Conv2D(filters=q_levels, kernel_size=1, strides=1)(x) | |
pixelcnn = keras.Model(inputs=inputs, outputs=x) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment