Created
December 14, 2022 20:18
-
-
Save Warvito/5c3363ddbf3941150c2511b27b75d701 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch import nn | |
from monai.utils import optional_import | |
xformers, has_xformers = optional_import("xformers", name="xformers") | |
class SelfAttentionBlock(nn.Module): | |
def __init__( | |
self, | |
query_dim: int, | |
num_attention_heads: int = 8, | |
num_head_channels: int = 64, | |
dropout: float = 0.0, | |
) -> None: | |
super().__init__() | |
inner_dim = num_head_channels * num_attention_heads | |
self.scale = num_head_channels**-0.5 | |
self.heads = num_attention_heads | |
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) | |
self.to_k = nn.Linear(query_dim, inner_dim, bias=False) | |
self.to_v = nn.Linear(query_dim, inner_dim, bias=False) | |
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)) | |
def reshape_heads_to_batch_dim(self, x: torch.Tensor) -> torch.Tensor: | |
batch_size, seq_len, dim = x.shape | |
head_size = self.heads | |
x = x.reshape(batch_size, seq_len, head_size, dim // head_size) | |
x = x.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size) | |
return x | |
def reshape_batch_dim_to_heads(self, x: torch.Tensor) -> torch.Tensor: | |
batch_size, seq_len, dim = x.shape | |
head_size = self.heads | |
x = x.reshape(batch_size // head_size, head_size, seq_len, dim) | |
x = x.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) | |
return x | |
def _attention(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor) -> torch.Tensor: | |
attention_scores = torch.matmul(query, key.transpose(-1, -2)) | |
attention_probs = attention_scores.softmax(dim=-1) | |
# compute attention output | |
hidden_states = torch.matmul(attention_probs, value) | |
# reshape hidden_states | |
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
return hidden_states | |
def _memory_efficient_attention_xformers(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor) -> torch.Tensor: | |
query = query.contiguous() | |
key = key.contiguous() | |
value = value.contiguous() | |
x = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=None) | |
x = self.reshape_batch_dim_to_heads(x) | |
x = x.to(query.dtype) | |
return x | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
query = self.to_q(x) | |
key = self.to_k(x) | |
value = self.to_v(x) | |
query = self.reshape_heads_to_batch_dim(query) | |
key = self.reshape_heads_to_batch_dim(key) | |
value = self.reshape_heads_to_batch_dim(value) | |
if has_xformers: | |
x = self._memory_efficient_attention_xformers(query, key, value) | |
else: | |
x = self._attention(query, key, value) | |
return self.to_out(x) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment