Created
March 12, 2019 06:15
-
-
Save Tooluloope/9755d3fb4664451d47be5d2e572f12d9 to your computer and use it in GitHub Desktop.
Numpy from scratch
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
import h5py | |
def load_data(): | |
train_dataset = h5py.File('./train_catvnoncat.h5', "r") | |
train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features | |
train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels | |
test_dataset = h5py.File('./test_catvnoncat.h5', "r") | |
test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features | |
test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels | |
classes = np.array(test_dataset["list_classes"][:]) # the list of classes | |
train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0])) | |
test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0])) | |
return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment