Created
May 2, 2021 01:27
-
-
Save Sevaarcen/0c0ef1d821e2de865473e9e845ed7fe7 to your computer and use it in GitHub Desktop.
Creates a CSV of programs' memory usage from volatility's VADinfo output
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import json | |
import pandas | |
VADINFO_FILE=r"FILE_PATH_GOES_HERE" | |
CSV_OUTPUT=r"FILE_PATH_GOES_HERE" | |
# thanks https://stackoverflow.com/questions/1094841/get-human-readable-version-of-file-size | |
def sizeof_fmt(num, suffix='B'): | |
for unit in ['','Ki','Mi','Gi','Ti','Pi','Ei','Zi']: | |
if abs(num) < 1024.0: | |
return "%3.1f%s%s" % (num, unit, suffix) | |
num /= 1024.0 | |
return "%.1f%s%s" % (num, 'Yi', suffix) | |
fh = open(VADINFO_FILE, "r") | |
process_details = {} | |
linecount = 0 | |
for line in fh.readlines(): | |
linecount += 1 | |
# skip headers | |
if linecount < 5: | |
continue | |
line_vals = line.split("\t") | |
#print(line_vals) | |
# get columns of interest | |
pid = line_vals[0] | |
name = line_vals[1] | |
mem_start = line_vals[3] | |
mem_end = line_vals[4] | |
# This is the max 64bit address; doesn't appear to actually be used so don't calcualate it | |
if mem_end == "0x7fffffeffff": | |
continue | |
# calc total memory in allocated range | |
mem_diff = int(mem_end, 0) - int(mem_start, 0) | |
#print(f"{mem_end}({int(mem_end, 0)}) - {mem_start}({int(mem_start, 0)}) = {mem_diff}") | |
# update/set variables | |
process_dict = process_details.setdefault(pid, {}) | |
process_dict["process_name"] = name | |
prev_mem_usage = process_dict.setdefault("memory_usage", 0) | |
total_memory_usage = prev_mem_usage + mem_diff | |
process_dict["memory_usage"] = total_memory_usage | |
process_dict["memory_usage_hr"] = sizeof_fmt(total_memory_usage) | |
df = pandas.DataFrame.from_dict(process_details, orient="index") | |
df.to_csv(CSV_OUTPUT) | |
print(df) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment