Created
March 10, 2024 21:18
-
-
Save RylanSchaeffer/8198233a445ab3373aff01b038cc4b8b to your computer and use it in GitHub Desktop.
Llava Vicuna7B RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:1 and cuda:0! (when checking argument for argument weight in method wrapper_CUDA__native_layer_norm)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" | |
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1" | |
from accelerate import Accelerator | |
import dataclasses | |
from enum import auto, Enum | |
import torch | |
from typing import Any, Dict, List, Optional, Tuple | |
from llava.model.builder import load_pretrained_model | |
from llava.mm_utils import get_model_name_from_path | |
# Model Constants | |
IGNORE_INDEX = -100 | |
IMAGE_TOKEN_INDEX = -200 | |
DEFAULT_IMAGE_TOKEN = "<image>" | |
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>" | |
DEFAULT_IM_START_TOKEN = "<im_start>" | |
DEFAULT_IM_END_TOKEN = "<im_end>" | |
def prepare_text_prompt(user_prompt): | |
qs = DEFAULT_IMAGE_TOKEN + "\n" + user_prompt | |
conv = conv_llava_llama_2.copy() | |
conv.append_message(conv.roles[0], qs) | |
conv.append_message(conv.roles[1], None) | |
prompt = conv.get_prompt() | |
return prompt | |
def normalize_images(images: torch.Tensor) -> torch.Tensor: | |
mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).to(images.device) | |
std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).to(images.device) | |
images = images - mean[None, :, None, None] | |
images = images / std[None, :, None, None] | |
return images | |
def tokenizer_image_token( | |
prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None | |
): | |
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split("<image>")] | |
def insert_separator(X, sep): | |
return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1] | |
input_ids = [] | |
offset = 0 | |
if ( | |
len(prompt_chunks) > 0 | |
and len(prompt_chunks[0]) > 0 | |
and prompt_chunks[0][0] == tokenizer.bos_token_id | |
): | |
offset = 1 | |
input_ids.append(prompt_chunks[0][0]) | |
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)): | |
input_ids.extend(x[offset:]) | |
if return_tensors is not None: | |
if return_tensors == "pt": | |
return torch.tensor(input_ids, dtype=torch.long) | |
raise ValueError(f"Unsupported tensor type: {return_tensors}") | |
return input_ids | |
class SeparatorStyle(Enum): | |
"""Different separator style.""" | |
SINGLE = auto() | |
TWO = auto() | |
MPT = auto() | |
PLAIN = auto() | |
LLAMA_2 = auto() | |
@dataclasses.dataclass | |
class Conversation: | |
"""A class that keeps all conversation history.""" | |
system: str | |
roles: List[str] | |
messages: List[List[str]] | |
offset: int | |
sep_style: SeparatorStyle = SeparatorStyle.SINGLE | |
sep: str = "###" | |
sep2: str = None | |
version: str = "Unknown" | |
skip_next: bool = False | |
def get_prompt(self): | |
messages = self.messages | |
if len(messages) > 0 and type(messages[0][1]) is tuple: | |
messages = self.messages.copy() | |
init_role, init_msg = messages[0].copy() | |
init_msg = init_msg[0].replace("<image>", "").strip() | |
if "mmtag" in self.version: | |
messages[0] = (init_role, init_msg) | |
messages.insert(0, (self.roles[0], "<Image><image></Image>")) | |
messages.insert(1, (self.roles[1], "Received.")) | |
else: | |
messages[0] = (init_role, "<image>\n" + init_msg) | |
if self.sep_style == SeparatorStyle.SINGLE: | |
ret = self.system + self.sep | |
for role, message in messages: | |
if message: | |
if type(message) is tuple: | |
message, _, _ = message | |
ret += role + ": " + message + self.sep | |
else: | |
ret += role + ":" | |
elif self.sep_style == SeparatorStyle.TWO: | |
seps = [self.sep, self.sep2] | |
ret = self.system + seps[0] | |
for i, (role, message) in enumerate(messages): | |
if message: | |
if type(message) is tuple: | |
message, _, _ = message | |
ret += role + ": " + message + seps[i % 2] | |
else: | |
ret += role + ":" | |
elif self.sep_style == SeparatorStyle.MPT: | |
ret = self.system + self.sep | |
for role, message in messages: | |
if message: | |
if type(message) is tuple: | |
message, _, _ = message | |
ret += role + message + self.sep | |
else: | |
ret += role | |
elif self.sep_style == SeparatorStyle.LLAMA_2: | |
wrap_sys = lambda msg: f"<<SYS>>\n{msg}\n<</SYS>>\n\n" | |
wrap_inst = lambda msg: f"[INST] {msg} [/INST]" | |
ret = "" | |
for i, (role, message) in enumerate(messages): | |
if i == 0: | |
assert message, "first message should not be none" | |
assert role == self.roles[0], "first message should come from user" | |
if message: | |
if type(message) is tuple: | |
message, _, _ = message | |
if i == 0: | |
message = wrap_sys(self.system) + message | |
if i % 2 == 0: | |
message = wrap_inst(message) | |
ret += self.sep + message | |
else: | |
ret += " " + message + " " + self.sep2 | |
else: | |
ret += "" | |
ret = ret.lstrip(self.sep) | |
elif self.sep_style == SeparatorStyle.PLAIN: | |
seps = [self.sep, self.sep2] | |
ret = self.system | |
for i, (role, message) in enumerate(messages): | |
if message: | |
if type(message) is tuple: | |
message, _, _ = message | |
ret += message + seps[i % 2] | |
else: | |
ret += "" | |
else: | |
raise ValueError(f"Invalid style: {self.sep_style}") | |
return ret | |
def append_message(self, role, message): | |
self.messages.append([role, message]) | |
def get_images(self, return_pil=False): | |
images = [] | |
for i, (role, msg) in enumerate(self.messages[self.offset :]): | |
if i % 2 == 0: | |
if type(msg) is tuple: | |
import base64 | |
from io import BytesIO | |
from PIL import Image | |
msg, image, image_process_mode = msg | |
if image_process_mode == "Pad": | |
def expand2square(pil_img, background_color=(122, 116, 104)): | |
width, height = pil_img.size | |
if width == height: | |
return pil_img | |
elif width > height: | |
result = Image.new( | |
pil_img.mode, (width, width), background_color | |
) | |
result.paste(pil_img, (0, (width - height) // 2)) | |
return result | |
else: | |
result = Image.new( | |
pil_img.mode, (height, height), background_color | |
) | |
result.paste(pil_img, ((height - width) // 2, 0)) | |
return result | |
image = expand2square(image) | |
elif image_process_mode == "Crop": | |
pass | |
elif image_process_mode == "Resize": | |
image = image.resize((336, 336)) | |
else: | |
raise ValueError( | |
f"Invalid image_process_mode: {image_process_mode}" | |
) | |
max_hw, min_hw = max(image.size), min(image.size) | |
aspect_ratio = max_hw / min_hw | |
max_len, min_len = 800, 400 | |
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw)) | |
longest_edge = int(shortest_edge * aspect_ratio) | |
W, H = image.size | |
if H > W: | |
H, W = longest_edge, shortest_edge | |
else: | |
H, W = shortest_edge, longest_edge | |
image = image.resize((W, H)) | |
if return_pil: | |
images.append(image) | |
else: | |
buffered = BytesIO() | |
image.save(buffered, format="PNG") | |
img_b64_str = base64.b64encode(buffered.getvalue()).decode() | |
images.append(img_b64_str) | |
return images | |
def to_gradio_chatbot(self): | |
ret = [] | |
for i, (role, msg) in enumerate(self.messages[self.offset :]): | |
if i % 2 == 0: | |
if type(msg) is tuple: | |
import base64 | |
from io import BytesIO | |
msg, image, image_process_mode = msg | |
max_hw, min_hw = max(image.size), min(image.size) | |
aspect_ratio = max_hw / min_hw | |
max_len, min_len = 800, 400 | |
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw)) | |
longest_edge = int(shortest_edge * aspect_ratio) | |
W, H = image.size | |
if H > W: | |
H, W = longest_edge, shortest_edge | |
else: | |
H, W = shortest_edge, longest_edge | |
image = image.resize((W, H)) | |
buffered = BytesIO() | |
image.save(buffered, format="JPEG") | |
img_b64_str = base64.b64encode(buffered.getvalue()).decode() | |
img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />' | |
ret.append([img_str, None]) | |
msg = msg.replace("<image>", "").strip() | |
if len(msg) > 0: | |
ret.append([msg, None]) | |
else: | |
ret.append([msg, None]) | |
else: | |
ret[-1][-1] = msg | |
return ret | |
def copy(self): | |
return Conversation( | |
system=self.system, | |
roles=self.roles, | |
messages=[[x, y] for x, y in self.messages], | |
offset=self.offset, | |
sep_style=self.sep_style, | |
sep=self.sep, | |
sep2=self.sep2, | |
version=self.version, | |
) | |
def dict(self): | |
if len(self.get_images()) > 0: | |
return { | |
"system": self.system, | |
"roles": self.roles, | |
"messages": [ | |
[x, y[0] if type(y) is tuple else y] for x, y in self.messages | |
], | |
"offset": self.offset, | |
"sep": self.sep, | |
"sep2": self.sep2, | |
} | |
return { | |
"system": self.system, | |
"roles": self.roles, | |
"messages": self.messages, | |
"offset": self.offset, | |
"sep": self.sep, | |
"sep2": self.sep2, | |
} | |
conv_vicuna_v0 = Conversation( | |
system="A chat between a curious human and an artificial intelligence assistant. " | |
"The assistant gives helpful, detailed, and polite answers to the human's questions.", | |
roles=("Human", "Assistant"), | |
messages=( | |
( | |
"Human", | |
"What are the key differences between renewable and non-renewable energy sources?", | |
), | |
( | |
"Assistant", | |
"Renewable energy sources are those that can be replenished naturally in a relatively " | |
"short amount of time, such as solar, wind, hydro, geothermal, and biomass. " | |
"Non-renewable energy sources, on the other hand, are finite and will eventually be " | |
"depleted, such as coal, oil, and natural gas. Here are some key differences between " | |
"renewable and non-renewable energy sources:\n" | |
"1. Availability: Renewable energy sources are virtually inexhaustible, while non-renewable " | |
"energy sources are finite and will eventually run out.\n" | |
"2. Environmental impact: Renewable energy sources have a much lower environmental impact " | |
"than non-renewable sources, which can lead to air and water pollution, greenhouse gas emissions, " | |
"and other negative effects.\n" | |
"3. Cost: Renewable energy sources can be more expensive to initially set up, but they typically " | |
"have lower operational costs than non-renewable sources.\n" | |
"4. Reliability: Renewable energy sources are often more reliable and can be used in more remote " | |
"locations than non-renewable sources.\n" | |
"5. Flexibility: Renewable energy sources are often more flexible and can be adapted to different " | |
"situations and needs, while non-renewable sources are more rigid and inflexible.\n" | |
"6. Sustainability: Renewable energy sources are more sustainable over the long term, while " | |
"non-renewable sources are not, and their depletion can lead to economic and social instability.\n", | |
), | |
), | |
offset=2, | |
sep_style=SeparatorStyle.SINGLE, | |
sep="###", | |
) | |
conv_vicuna_v1 = Conversation( | |
system="A chat between a curious user and an artificial intelligence assistant. " | |
"The assistant gives helpful, detailed, and polite answers to the user's questions.", | |
roles=("USER", "ASSISTANT"), | |
version="v1", | |
messages=(), | |
offset=0, | |
sep_style=SeparatorStyle.TWO, | |
sep=" ", | |
sep2="</s>", | |
) | |
conv_llama_2 = Conversation( | |
system="""You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. | |
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""", | |
roles=("USER", "ASSISTANT"), | |
version="llama_v2", | |
messages=(), | |
offset=0, | |
sep_style=SeparatorStyle.LLAMA_2, | |
sep="<s>", | |
sep2="</s>", | |
) | |
conv_llava_llama_2 = Conversation( | |
system="You are a helpful language and vision assistant. " | |
"You are able to understand the visual content that the user provides, " | |
"and assist the user with a variety of tasks using natural language.", | |
roles=("USER", "ASSISTANT"), | |
version="llama_v2", | |
messages=(), | |
offset=0, | |
sep_style=SeparatorStyle.LLAMA_2, | |
sep="<s>", | |
sep2="</s>", | |
) | |
conv_mpt = Conversation( | |
system="""<|im_start|>system | |
A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.""", | |
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"), | |
version="mpt", | |
messages=(), | |
offset=0, | |
sep_style=SeparatorStyle.MPT, | |
sep="<|im_end|>", | |
) | |
conv_llava_plain = Conversation( | |
system="", | |
roles=("", ""), | |
messages=(), | |
offset=0, | |
sep_style=SeparatorStyle.PLAIN, | |
sep="\n", | |
) | |
conv_llava_v0 = Conversation( | |
system="A chat between a curious human and an artificial intelligence assistant. " | |
"The assistant gives helpful, detailed, and polite answers to the human's questions.", | |
roles=("Human", "Assistant"), | |
messages=(("Human", "Hi!"), ("Assistant", "Hi there! How can I help you today?")), | |
offset=2, | |
sep_style=SeparatorStyle.SINGLE, | |
sep="###", | |
) | |
conv_llava_v0_mmtag = Conversation( | |
system="A chat between a curious user and an artificial intelligence assistant. " | |
"The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language." | |
"The visual content will be provided with the following format: <Image>visual content</Image>.", | |
roles=("Human", "Assistant"), | |
messages=(), | |
offset=0, | |
sep_style=SeparatorStyle.SINGLE, | |
sep="###", | |
version="v0_mmtag", | |
) | |
conv_llava_v1 = Conversation( | |
system="A chat between a curious human and an artificial intelligence assistant. " | |
"The assistant gives helpful, detailed, and polite answers to the human's questions.", | |
roles=("USER", "ASSISTANT"), | |
version="v1", | |
messages=(), | |
offset=0, | |
sep_style=SeparatorStyle.TWO, | |
sep=" ", | |
sep2="</s>", | |
) | |
conv_llava_v1_mmtag = Conversation( | |
system="A chat between a curious user and an artificial intelligence assistant. " | |
"The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language." | |
"The visual content will be provided with the following format: <Image>visual content</Image>.", | |
roles=("USER", "ASSISTANT"), | |
messages=(), | |
offset=0, | |
sep_style=SeparatorStyle.TWO, | |
sep=" ", | |
sep2="</s>", | |
version="v1_mmtag", | |
) | |
default_conversation = conv_vicuna_v0 | |
conversation_templates = { | |
"default": conv_vicuna_v0, | |
"v0": conv_vicuna_v0, | |
"v1": conv_vicuna_v1, | |
"vicuna_v1": conv_vicuna_v1, | |
"llama_2": conv_llama_2, | |
"v0_plain": conv_llava_plain, | |
"llava_v0": conv_llava_v0, | |
"v0_mmtag": conv_llava_v0_mmtag, | |
"llava_v1": conv_llava_v1, | |
"v1_mmtag": conv_llava_v1_mmtag, | |
"llava_llama_2": conv_llava_llama_2, | |
"mpt": conv_mpt, | |
} | |
class LlavaVisionLanguageModel(torch.nn.Module): | |
def __init__( | |
self, | |
huggingface_name: str = "llava-hf/llava-1.5-7b-hf", | |
generation_kwargs: Dict[str, Any] = None, | |
accelerator: Optional[Accelerator] = None, | |
): | |
super(LlavaVisionLanguageModel, self).__init__() | |
self.huggingface_name = huggingface_name | |
self.generation_kwargs = generation_kwargs | |
if self.huggingface_name == "llava-hf/llava-1.5-7b-hf": | |
self.conv_template_name = "vicuna_v1" | |
elif self.huggingface_name == "liuhaotian/llava-v1.6-34b": | |
# https://github.com/haotian-liu/LLaVA/issues/1078 | |
self.conv_template_name = "chatml_direct" | |
elif self.huggingface_name == "liuhaotian/llava-v1.6-vicuna-7b": | |
self.conv_template_name = "vicuna_v1" | |
elif self.huggingface_name == "liuhaotian/llava-v1.6-vicuna-13b": | |
self.conv_template_name = "vicuna_v1" | |
else: | |
self.conv_template_name = "default" | |
self.conv_template = conversation_templates[self.conv_template_name] | |
# self.device = torch.device( | |
# f"cuda:{self.gpu_id}" if torch.cuda.is_available() else "cpu" | |
# ) | |
self.accelerator = accelerator | |
if accelerator is not None: | |
self.device = accelerator.device | |
else: | |
self.device = ( | |
torch.device("cuda") | |
if torch.cuda.is_available() | |
else torch.device("cpu") | |
) | |
( | |
self.tokenizer, | |
self.model, | |
self.image_processor, | |
self.context_len, | |
) = load_pretrained_model( | |
model_path=self.huggingface_name, | |
model_base=None, | |
model_name=get_model_name_from_path(self.huggingface_name), | |
# device_map={"device_map": self.gpu_id}, | |
) | |
self.text_prompt_template = prepare_text_prompt("") | |
print(self.text_prompt_template) | |
def convert_prompts_and_maybe_targets_to_input_ids_and_attention_mask( | |
self, | |
prompts: List[str], | |
targets: Optional[List[str]] = None, | |
) -> Dict[str, torch.Tensor]: | |
if targets is None: | |
targets = [None for _ in range(len(prompts))] | |
prompts_with_image_tokens = [ | |
DEFAULT_IM_START_TOKEN | |
+ DEFAULT_IMAGE_TOKEN | |
+ DEFAULT_IM_END_TOKEN | |
+ "\n" | |
+ prompt | |
for prompt in prompts | |
] | |
templated_prompts = [] | |
for prompt, target in zip(prompts_with_image_tokens, targets): | |
conv = self.conv_template.copy() | |
conv.append_message(conv.roles[0], prompt) | |
conv.append_message(conv.roles[1], target) | |
templated_prompt = conv.get_prompt() | |
templated_prompts.append(templated_prompt) | |
input_ids_list: List[List[int]] = [ | |
tokenizer_image_token( | |
templated_prompt, | |
self.tokenizer, | |
IMAGE_TOKEN_INDEX, | |
) | |
for templated_prompt in templated_prompts | |
] | |
# Pad all input_ids to be the same length using the tokenizer's padding token. | |
attention_mask = [] | |
max_length = max([len(input_ids) for input_ids in input_ids_list]) | |
for idx, input_ids in enumerate(input_ids_list): | |
padding_length = max_length - len(input_ids) | |
attention_mask.append( | |
[1 for _ in range(max_length - padding_length)] | |
+ [0 for _ in range(padding_length)] | |
) | |
input_ids.extend( | |
[self.tokenizer.pad_token_id for _ in range(padding_length)] | |
) | |
input_ids = torch.tensor(input_ids_list) | |
attention_mask = torch.tensor(attention_mask) | |
results = { | |
"input_ids": input_ids, | |
"attention_mask": attention_mask, | |
} | |
if targets[0] is not None: | |
labels = input_ids.clone() | |
last_nonpadding_indices = torch.argmin((labels != 0).float(), axis=1) | |
# Find the last non-zero token. Then set labels to ignore for anything | |
# before and before the targets (plus two). | |
tokenized_labels = self.tokenizer(targets).input_ids | |
for batch_idx, (last_nonpadding_idx, tokenized_label) in enumerate( | |
zip(last_nonpadding_indices, tokenized_labels) | |
): | |
target_start_idx = last_nonpadding_idx - len(tokenized_label) - 1 | |
labels[batch_idx, :target_start_idx] = IGNORE_INDEX | |
# Also mask out the padding tokens. | |
labels[labels == 0] = IGNORE_INDEX | |
results["labels"] = labels | |
return results | |
@torch.inference_mode() | |
def generate(self, images: torch.Tensor, prompts: List[str]) -> List[str]: | |
# Based on https://github.com/haotian-liu/LLaVA/blob/main/llava/eval/run_llava.py#L50 | |
# and also based on https://github.com/haotian-liu/LLaVA/blob/main/llava/eval/model_vqa.py. | |
image_pixel_values = self.image_processor( | |
images, do_rescale=False, return_tensors="pt" | |
)["pixel_values"].to(self.device) | |
input_ids = ( | |
self.convert_prompts_and_maybe_targets_to_input_ids_and_attention_mask( | |
prompts=prompts, | |
targets=None, | |
)["input_ids"].to(self.device) | |
) | |
self.model = self.model.to(self.device) | |
generated_ids = self.model.generate( | |
input_ids.to(self.device), | |
images=image_pixel_values.half().to(self.device), | |
do_sample=True if self.generation_kwargs["temperature"] > 0 else False, | |
cache_position=None, | |
**self.generation_kwargs, | |
) | |
model_generations = self.tokenizer.batch_decode( | |
generated_ids, skip_special_tokens=True | |
) | |
return model_generations | |
accelerator = Accelerator() | |
llava_vicuna_7b_vlm = LlavaVisionLanguageModel( | |
huggingface_name="liuhaotian/llava-v1.5-7b", | |
accelerator=accelerator, | |
generation_kwargs={ | |
"temperature": 0.1, | |
"top_p": 0.9, | |
"max_new_tokens": 100, | |
"min_new_tokens": 5, | |
}, | |
) | |
llava_vicuna_7b_vlm = accelerator.prepare(llava_vicuna_7b_vlm) | |
images = torch.rand(1, 3, 336, 336) | |
prompts = ["What is this image?"] | |
generated_text = llava_vicuna_7b_vlm.generate(images=images, prompts=prompts) | |
print("Llava Vicuna 7B Generated text: ", generated_text) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment