Skip to content

Instantly share code, notes, and snippets.

@RasinGue
Created July 8, 2019 07:28
Show Gist options
  • Save RasinGue/9c3150c945010ec093002a52b03a7320 to your computer and use it in GitHub Desktop.
Save RasinGue/9c3150c945010ec093002a52b03a7320 to your computer and use it in GitHub Desktop.
import torch
import torch.nn as nn
import torchvision
# VGG for perceptual loss
class VGG19(nn.Module):
def __init__(self, require_grad=False):
super(VGG19, self).__init__()
vgg_pretrained_features = torchvision.models.vgg19(pretrained=True).features
self.slice1 = nn.Sequential()
self.slice2 = nn.Sequential()
self.slice3 = nn.Sequential()
self.slice4 = nn.Sequential()
self.slice5 = nn.Sequential()
for x in range(2):
self.slice1.add_module(str(x), vgg_pretrained_features[x])
for x in range(2, 7):
self.slice2.add_module(str(x), vgg_pretrained_features[x])
for x in range(7, 12):
self.slice3.add_module(str(x), vgg_pretrained_features[x])
for x in range(12, 21):
self.slice4.add_module(str(x), vgg_pretrained_features[x])
for x in range(21, 30):
self.slice5.add_module(str(x), vgg_pretrained_features[x])
if not require_grad:
for param in self.parameters():
param.require_grad = False
def forward(self, x):
h_relu1 = self.slice1(x)
h_relu2 = self.slice2(h_relu1)
h_relu3 = self.slice3(h_relu2)
h_relu4 = self.slice4(h_relu3)
h_relu5 = self.slice5(h_relu4)
out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5]
return out
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment