Created
May 18, 2015 09:48
-
-
Save Moddus/356af259c26e460a8f80 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
class Perzeptron: | |
def __init__(self, t, my, d, maxiter, sign): | |
self.t = t | |
self.my = my | |
self.maxiter = maxiter | |
self.sign = sign | |
self.w = np.mat([[-self.t],[1],[1]]) | |
self.d = d | |
def delta(self, x, d): | |
return self.my*(d-self.calculate(x)) | |
def calculate(self, x): | |
return self.sign(float(self.w.T * x)) | |
def training(self, data): | |
itercount = 0 | |
while(self.maxiter != itercount): | |
itercount += 1 | |
for i in range(data.shape[0]): | |
xi = data[i].T | |
delta = self.delta(xi, self.d[i]) | |
self.w += delta * xi | |
def lineare(x): | |
c = 2 | |
r = 0 | |
if x > c: | |
r = 1 | |
elif x < -c: | |
r = 0 | |
else: | |
r = 1/(2*c)*(x+c) | |
return r | |
def fermi(x): | |
return 1 / (1 + np.exp(-x)) | |
def tanh(x): | |
return (1 + np.tanh(x))/2 | |
def hart(x): | |
if x >= 0: | |
return 1 | |
return 0 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
from perzeptron import * | |
data = np.mat([[1, 0, 0],[1, 0, 1], [1, 1, 0], [1, 1, 1]]) | |
result_OR = np.array([0, 1, 1, 1]) | |
result_AND = np.array([0, 0, 0, 1]) | |
result_XOR = np.array([0, 1, 1, 0]) | |
p = Perzeptron(0.5, 0.1, result_OR, 10000, lineare) | |
p.training(data) | |
print(p.calculate(data[0].T)) | |
print(p.calculate(data[1].T)) | |
print(p.calculate(data[2].T)) | |
print(p.calculate(data[3].T)) | |
print(p.w) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as py | |
from perzeptron import * | |
data = np.mat([[1, 0, 0],[1, 0, 1], [1, 1, 0], [1, 1, 1]]) | |
result_OR = np.array([0, 1, 1, 1]) | |
result_AND = np.array([0, 0, 0, 1]) | |
result_XOR = np.array([0, 1, 1, 0]) | |
t = 0.5 | |
my = 0.1 | |
iter = 1000 | |
eps = 0.01 | |
def isBetween(v,r): | |
return v >= r - eps and v <= r + eps | |
def test_or_perzeptron(): | |
p = Perzeptron(t, my, result_OR, iter, lineare) | |
p.training(data) | |
assert isBetween(p.calculate(data[0].T), 0) == True | |
assert isBetween(p.calculate(data[1].T), 1) == True | |
assert isBetween(p.calculate(data[2].T), 1) == True | |
assert isBetween(p.calculate(data[3].T), 1) == True | |
def test_and_perzeptron(): | |
p = Perzeptron(t, my, result_AND, iter, lineare) | |
p.training(data) | |
assert isBetween(p.calculate(data[0].T), 0) == True | |
assert isBetween(p.calculate(data[1].T), 0) == True | |
assert isBetween(p.calculate(data[2].T), 0) == True | |
assert isBetween(p.calculate(data[3].T), 1) == True |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment