Created
December 21, 2021 00:56
-
-
Save MBaltz/a30df09b6f09e008d52afc65b59a1fb9 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from time import time | |
import numpy as np | |
from base_dados.BalancedScale import get_dataset | |
from sklearn import svm | |
from sklearn.model_selection import RepeatedKFold | |
from sklearn.metrics import confusion_matrix | |
from sklearn.metrics import precision_score | |
dir_database = "./base_dados/balance-scale.data" | |
# seeds: 24, 47, 33, 29, 47, 48, 49, 6, 19 | |
atrib_train, labels_train, atrib_test, labels_test, labels_names = get_dataset( | |
dir_database, proporcao_train_dataset=0.8, printar=False, seed=49) | |
feature_names = ["Left-Weight", "Left-Distance", "Right-Weight", "Right-Distance"] | |
num_splits = 10 | |
num_repeats = 10 | |
rkf = RepeatedKFold(n_splits=num_splits, n_repeats=num_repeats, random_state=49) | |
kernels = ["linear", "poly", "rbf", "sigmoid"] # "precomputed" | |
for k in kernels: | |
t1 = time() | |
media_kernel = 0.0 | |
for train_index, vali_index in rkf.split(atrib_train): | |
X_train, X_vali = atrib_train[train_index], atrib_train[vali_index] | |
y_train, y_vali = labels_train[train_index], labels_train[vali_index] | |
clf = svm.SVC(kernel=k) | |
clf.fit(X_train, y_train) | |
predicao = clf.predict(X_vali) | |
media_kernel += (np.sum(y_vali == predicao)/len(y_vali))*100 | |
print(f"Acurácia [VALI] do kernel {k}:", end=" \t") | |
print(f"{media_kernel/(num_splits*num_repeats):.3f}%") | |
print(f"Acurácia [TESTE] do kernel {k}:", end=" \t") | |
predicao = clf.predict(atrib_test) | |
print(f"{(np.sum(labels_test == predicao)/len(labels_test))*100:.3f}%") | |
print(confusion_matrix(predicao, labels_test)) | |
print(f"Tempo de Execução: {time()-t1:.5f}s") | |
preci = precision_score(predicao, labels_test, average=None)*100 | |
print(f"Precisão: {list(zip(preci, [x[1] for x in labels_names]))}") | |
print(f"----") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment