-
-
Save Jmuccigr/e690dd9dc453976174590979cac2674d to your computer and use it in GitHub Desktop.
Crop image to area of text only
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
''' | |
Crop an image to just the portions containing text. | |
Usage: | |
./crop_morphology.py path/to/image.jpg | |
This will place the cropped image in path/to/image.crop.png. | |
For details on the methodology, see | |
http://www.danvk.org/2015/01/07/finding-blocks-of-text-in-an-image-using-python-opencv-and-numpy.html | |
Script created by Dan Vanderkam (https://github.com/danvk) | |
Adapted to Python 3 by Lui Pillmann (https://github.com/luipillmann) | |
Subsequently adapted by Fábio Franco Uechi. | |
Further adapted by John Muccigrosso. | |
''' | |
import glob | |
import os | |
import random | |
import sys | |
import random | |
import math | |
import json | |
from collections import defaultdict | |
import cv2 | |
from PIL import Image, ImageDraw | |
import numpy as np | |
from scipy.ndimage.filters import rank_filter | |
from matplotlib import pyplot as plt | |
def dilate(ary, N, iterations): | |
"""Dilate using an NxN '+' sign shape. ary is np.uint8.""" | |
kernel = np.zeros((N,N), dtype=np.uint8) | |
kernel[(N-1)//2,:] = 1 # Bug solved with // (integer division) | |
dilated_image = cv2.dilate(ary / 255, kernel, iterations=iterations) | |
kernel = np.zeros((N,N), dtype=np.uint8) | |
kernel[:,(N-1)//2] = 1 # Bug solved with // (integer division) | |
dilated_image = cv2.dilate(dilated_image, kernel, iterations=iterations) | |
return dilated_image | |
def props_for_contours(contours, ary): | |
"""Calculate bounding box & the number of set pixels for each contour.""" | |
c_info = [] | |
for c in contours: | |
x,y,w,h = cv2.boundingRect(c) | |
c_im = np.zeros(ary.shape) | |
cv2.drawContours(c_im, [c], 0, 255, -1) | |
c_info.append({ | |
'x1': x, | |
'y1': y, | |
'x2': x + w - 1, | |
'y2': y + h - 1, | |
'sum': np.sum(ary * (c_im > 0))/255 | |
}) | |
return c_info | |
def union_crops(crop1, crop2): | |
"""Union two (x1, y1, x2, y2) rects.""" | |
x11, y11, x21, y21 = crop1 | |
x12, y12, x22, y22 = crop2 | |
return min(x11, x12), min(y11, y12), max(x21, x22), max(y21, y22) | |
def intersect_crops(crop1, crop2): | |
x11, y11, x21, y21 = crop1 | |
x12, y12, x22, y22 = crop2 | |
return max(x11, x12), max(y11, y12), min(x21, x22), min(y21, y22) | |
def crop_area(crop): | |
x1, y1, x2, y2 = crop | |
return max(0, x2 - x1) * max(0, y2 - y1) | |
def find_border_components(contours, ary): | |
borders = [] | |
area = ary.shape[0] * ary.shape[1] | |
for i, c in enumerate(contours): | |
x,y,w,h = cv2.boundingRect(c) | |
if w * h > 0.5 * area: | |
borders.append((i, x, y, x + w - 1, y + h - 1)) | |
return borders | |
def angle_from_right(deg): | |
return min(deg % 90, 90 - (deg % 90)) | |
def remove_border(contour, ary): | |
"""Remove everything outside a border contour.""" | |
# Use a rotated rectangle (should be a good approximation of a border). | |
# If it's far from a right angle, it's probably two sides of a border and | |
# we should use the bounding box instead. | |
c_im = np.zeros(ary.shape) | |
r = cv2.minAreaRect(contour) | |
degs = r[2] | |
if angle_from_right(degs) <= 10.0: | |
box = cv2.boxPoints(r) | |
box = np.int0(box) | |
cv2.drawContours(c_im, [box], 0, 255, -1) | |
cv2.drawContours(c_im, [box], 0, 0, 4) | |
else: | |
x1, y1, x2, y2 = cv2.boundingRect(contour) | |
cv2.rectangle(c_im, (x1, y1), (x2, y2), 255, -1) | |
cv2.rectangle(c_im, (x1, y1), (x2, y2), 0, 4) | |
return np.minimum(c_im, ary) | |
def find_components(edges, max_components=7): | |
"""Dilate the image until there are just a few connected components. | |
Returns contours for these components.""" | |
# Perform increasingly aggressive dilation until there are just a few | |
# connected components. | |
count = max_components + 1 | |
#dilation = 5 - JM: Doesn't do anything | |
n = 0 | |
while count > max_components: | |
n += 1 | |
dilated_image = dilate(edges, N=3, iterations=n) | |
dilated_image = np.uint8(dilated_image) | |
contours,hierachy=cv2.findContours(dilated_image,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) | |
count = len(contours) | |
return contours | |
def find_optimal_components_subset(contours, edges): | |
""" | |
Find a crop which strikes a good balance of coverage/compactness. | |
Returns an (x1, y1, x2, y2) tuple. | |
""" | |
c_info = props_for_contours(contours, edges) | |
c_info.sort(key=lambda x: -x['sum']) | |
h = edges.shape[0] | |
w = edges.shape[1] | |
area = h * w | |
# Remove strips at top or bottom as likely scanning artifacts | |
too_close = 0.05 | |
for i, c in enumerate(c_info): | |
if ( c['y2'] < too_close * h or | |
c['x2'] < too_close * w or | |
c['y1'] > h - (too_close * h) or | |
c['x1'] > w - (too_close * w) ): | |
del c_info[i] | |
total = np.sum(edges) / 255 | |
c = c_info[0] | |
del c_info[0] | |
this_crop = c['x1'], c['y1'], c['x2'], c['y2'] | |
crop = this_crop | |
covered_sum = c['sum'] | |
counter = 0 | |
while covered_sum < total: | |
changed = False | |
recall = 1.0 * covered_sum / total | |
prec = 1 - 1.0 * crop_area(crop) / area | |
f1 = 2 * (prec * recall / (prec + recall)) | |
for i, c in enumerate(c_info): | |
counter += 1 | |
this_crop = c['x1'], c['y1'], c['x2'], c['y2'] | |
new_crop = union_crops(crop, this_crop) | |
new_sum = covered_sum + c['sum'] | |
# Add this crop if it improves f1 score, | |
# _or_ it adds a min fraction of the remaining pixels for a maximum crop expansion. | |
# _or_ it's a big enough %age of the width of the image to be something | |
# ^^^ very ad-hoc! make this smoother | |
min_remaining_frac = .25 | |
wide_enough = .50 | |
too_close = 0.05 | |
remaining_frac = c['sum'] / (total - covered_sum) | |
if ( remaining_frac > min_remaining_frac ) or ( | |
( this_crop[2] - this_crop[0] ) > wide_enough * w ) : | |
crop = new_crop | |
covered_sum = new_sum | |
del c_info[i] | |
changed = True | |
break | |
if not changed: | |
break | |
return crop | |
def pad_crop(crop, contours, edges, border_contour, pad_px=15): | |
"""Slightly expand the crop to get full contours. | |
This will expand to include any contours it currently intersects, but will | |
not expand past a border. | |
""" | |
bx1, by1, bx2, by2 = 0, 0, edges.shape[0], edges.shape[1] | |
if border_contour is not None and len(border_contour) > 0: | |
c = props_for_contours([border_contour], edges)[0] | |
bx1, by1, bx2, by2 = c['x1'] + 5, c['y1'] + 5, c['x2'] - 5, c['y2'] - 5 | |
def crop_in_border(crop): | |
x1, y1, x2, y2 = crop | |
x1 = max(x1 - pad_px, bx1) | |
y1 = max(y1 - pad_px, by1) | |
x2 = min(x2 + pad_px, bx2) | |
y2 = min(y2 + pad_px, by2) | |
return crop | |
crop = crop_in_border(crop) | |
c_info = props_for_contours(contours, edges) | |
changed = False | |
for c in c_info: | |
this_crop = c['x1'], c['y1'], c['x2'], c['y2'] | |
this_area = crop_area(this_crop) | |
int_area = crop_area(intersect_crops(crop, this_crop)) | |
new_crop = crop_in_border(union_crops(crop, this_crop)) | |
if 0 < int_area < this_area and crop != new_crop: | |
print('%s -> %s' % (str(crop), str(new_crop))) | |
changed = True | |
crop = new_crop | |
if changed: | |
return pad_crop(crop, contours, edges, border_contour, pad_px) | |
else: | |
return crop | |
def downscale_image(im, max_dim=2048): | |
"""Shrink im until its longest dimension is <= max_dim. | |
Returns new_image, scale (where scale <= 1). | |
""" | |
b, a = im.shape | |
if max(a, b) <= max_dim: | |
return 1.0, im | |
scale = 1.0 * max_dim / max(a, b) | |
new_im = cv2.resize(im, (int(a * scale), int(b * scale))) | |
return scale, new_im | |
def auto_canny(image, sigma=0.33): | |
# compute the median of the single channel pixel intensities | |
v = np.median(image) | |
# apply automatic Canny edge detection using the computed median | |
lower = int(max(0, (1.0 - sigma) * v)) | |
upper = int(min(255, (1.0 + sigma) * v)) | |
# return the edged image | |
return (lower,upper) | |
def process_image(path, out_path): | |
print ('Starting...') | |
orig_im = cv2.imread(path) | |
im = cv2.cvtColor(orig_im, cv2.COLOR_BGR2GRAY) | |
scale, gray = downscale_image(im) | |
params = auto_canny (gray) | |
edges = cv2.Canny(np.asarray(gray), params[0], params[1]) | |
# TODO: dilate image _before_ finding a border. This is crazy sensitive! | |
contours,hierachy=cv2.findContours(edges,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) | |
borders = find_border_components(contours, edges) | |
borders.sort(key=lambda i_x1_y1_x2_y2: (i_x1_y1_x2_y2[3] - i_x1_y1_x2_y2[1]) * (i_x1_y1_x2_y2[4] - i_x1_y1_x2_y2[2])) | |
border_contour = None | |
if len(borders): | |
border_contour = contours[borders[0][0]] | |
edges = remove_border(border_contour, edges) | |
edges = 255 * (edges > 0).astype(np.uint8) | |
# Remove ~1px borders using a rank filter. | |
# Leave horizontal lines - JM | |
# maxed_cols = rank_filter(edges, -4, size=(20, 1)) | |
# debordered = np.minimum(np.minimum(edges, maxed_rows), maxed_cols) | |
maxed_rows = rank_filter(edges, -4, size=(1, 20)) | |
debordered = np.minimum(edges, maxed_rows) | |
edges = debordered | |
contours = find_components(edges) | |
if len(contours) == 0: | |
print('%s -> (no text!)' % path) | |
return | |
crop = find_optimal_components_subset(contours, edges) | |
crop = pad_crop(crop, contours, edges, border_contour) | |
crop = [int(x / scale) for x in crop] # upscale to the original image size. | |
#draw = ImageDraw.Draw(im) | |
#c_info = props_for_contours(contours, edges) | |
#for c in c_info: | |
# this_crop = c['x1'], c['y1'], c['x2'], c['y2'] | |
# draw.rectangle(this_crop, outline='blue') | |
#draw.rectangle(crop, outline='red') | |
#im.save(out_path) | |
#draw.text((50, 50), path, fill='red') | |
#orig_im.save(out_path) | |
#im.show() | |
img = Image.open(path) | |
text_im = img.crop(crop) | |
text_im.save(out_path) | |
print('%s -> %s' % (path, out_path)) | |
if __name__ == '__main__': | |
if len(sys.argv) == 2 and '*' in sys.argv[1]: | |
files = glob.glob(sys.argv[1]) | |
random.shuffle(files) | |
else: | |
files = sys.argv[1:] | |
for path in files: | |
out_path = path + ".crop.png" | |
#out_path = path.replace('.png', '.crop.png') # .png as input | |
if os.path.exists(out_path): | |
print ('\aOutput file already exists. Quitting.') | |
continue | |
if not os.path.exists(path): | |
print ('\aInput file missing. Quitting.') | |
continue | |
try: | |
process_image(path, out_path) | |
except Exception as e: | |
print('%s %s' % (path, e)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment